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ABSTRACT: 

 

Aiming at the lack of scientific and reasonable judgment of vehicles delivery scale and insufficient optimization of scheduling 

decision, based on features of the bike-sharing usage, this paper analyses the applicability of the discrete time and state of the 

Markov chain, and proves its properties to be irreducible, aperiodic and positive recurrent. Based on above analysis, the paper has 

reached to the conclusion that limit state (steady state) probability of the bike-sharing Markov chain only exists and is independent 

of the initial probability distribution. Then this paper analyses the difficulty of the transition probability matrix parameter statistics 

and the linear equations group solution in the traditional solving algorithm of the bike-sharing Markov chain. In order to improve the 

feasibility, this paper proposes a "virtual two-node vehicle scale solution" algorithm which considered the all the nodes beside the 

node to be solved as a virtual node, offered the transition probability matrix, steady state linear equations group and the 

computational methods related to the steady state scale, steady state arrival time and scheduling decision of the node to be solved. 

Finally, the paper evaluates the rationality and accuracy of the steady state probability of the proposed algorithm by comparing with 

the traditional algorithm. By solving the steady state scale of the nodes one by one, the proposed algorithm is proved to have strong 

feasibility because it lowers the level of computational difficulty and reduces the number of statistic, which will help the bike-sharing 

companies to optimize the scale and scheduling of nodes. 

 

 

1. INTRODUCTION 

The bike-sharing phenomenon has emerged suddenly since 

2016, which has been developing very rapidly in the first and 

second tier cities in China (Shao, Xue, 2017). By the end of 

2017, the number of bicycles shared by Mobike Technology Co., 

Ltd. has reached 6.5 million (Liu, 2017). Bike-sharing is an 

innovative mode of sharing economy in the Internet era, which 

is convenient for the daily travel of the public and worth of 

affirmation. However, on the other hand, the disorder of bike-

sharing has become increasingly prominent. Some company rely 

on the number of bike-sharing to win the market, showing chaos 

expansion, the scale and scheduling of vehicles urgently need 

scientific analysis in order to achieve the goal of standardized 

management. 

 

In the rapid development of bike-sharing, there are some 

problems such as the lack of scientifically reasonable decision 

of the scale of the vehicles and the insufficient decision-making 

of the dispatching of the rental nodes (this paper analyses the 

bike-sharing rental nodes without pile, hereinafter referred to as 

node), mainly as follows: 

 

(1) Some nodes have too many vehicles, the problems of 

idleness are prominent, and even the problems of hindering the 

normal passage of pedestrians and cars appear. At the same time, 

the number of bike-sharing in some nodes is too small to meet 

the needs of users. 

 

(2) Nodal vehicle replenishment or transport reaction is not 

timely, the number is not accurate, the rationality of the relevant 

decision-making is questionable. 

 

At present, the research tend to be more on the scale and 

dispatch of public bicycles invested by the government. 

Because of the relatively short operating hours, the research 

literature on the scale and dispatch of bike-sharing (mainly non-

pile type) invested by the company is seldom, researchers pay 

more attention to the transportation value and development 

paths of bike-sharing (Wang, 2017), the profitability 

approach(Jiao, 2017), behavioural norms(Li, 2017) and the 

design of crime prevention environment(Yang, 2017). Bike-

sharing and public bicycles are significantly different in site 

selection, leasing and usage, operation and charging modes, etc. 

With more flexibility, convenience and randomness, larger user 

groups, higher frequency of use and wider coverage, it is more 

difficult and more different to study the scale and scheduling of 

bike-sharing nodes. 

 

In order to avoid users' influence on individual preference 

factors of different brands of bike-sharing, this paper mainly 

analyses the issues such as the scale and dispatching of the bike-

sharing node in the same company. Under the precondition that 

the node position has been determined, the paper establishes the 

mathematical model of dynamic leasing of node vehicle, and 

analyses the steady-state characteristics of the node bicycle by 

using Markov chain(Gamerman, Lopes, 2006), and gives the 

optimal value of the node vehicle deployment and the 

reasonable vehicle scheduling time nodes. 

 

2. APPLICABLE ANALYSIS OF MARKOV CHAIN 

2.1 Construction of Steady-state Linear Equation Group 

The bike-sharing mainly solves the user's short-distance travel 

needs, the so-called solution to the "last mile" travel problems 
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(Ni, Zheng, et al., 2017). In the bike-sharing usage model, users 

rent and return vehicles mainly between adjacent nodes. Of 

course, this adjacent concept is relative. It is also common for 

users to rent bicycles between nodes that are far away from each 

other. During the period 0t - 1t , the user rent the shared bicycle 

from node j and return the rented bicycle at node k. The state of 

node k is only related to node j in the process of transfer, but 

not related to the states of other nodes in the same time period, 

and has nothing to do with the state of node j and other nodes 

before 0t  (no aftereffect). From this basic point of view, the 

state relations of bike-sharing nodes conform the basic 

conditions for the application of Markov process. The main 

characteristic of the dynamic behaviour of the Markov process 

is that the probability distribution of the future state depends 

only on the present state, not the process of reaching the present 

state. In order to solve the problem of bike-sharing node scale 

and scheduling, this paper mainly studies the discrete-time 

Markov chain (DTMC). 

 

Suppose a city has a total of n shared bicycle nodes, the states 

of node j during the time period include: 

 

(1) The users renting bike-sharings reach to the any other node, 

there exist n-1 possible (mutually exclusive), each of which has 

two states (e.g, the bike-sharings at node j and node k). Let the 

bike-sharing moves from node j to node k, and the two states 

are denoted as
jX  and kX  respectively. The transition 

probability of this bicycle transition process is denoted as 
jkP ，

 |jk k jP P X X , k j .  

 

(2) The bike-sharing is not leased by the user, or is still returned 

to the node j after being used, the state is denoted as 0X , and the 

transition probability is denoted as
jjP . 

 

The bike-sharing transition status of node j in the 0t - 1t time 

period as shown in Figure 1. 

 

 
Figure 1. Transition states of node j  

 

In the scale analysis of bike-sharing nodes vehicles discussed in 

this paper, jkP can be regarded as the ratio of the average 

number of node j reach to node k in the multiple  0 1t t periods 

to the initial average of the total number of node j ,  jjP can be 

regarded as the ratio of the average number of cycling units at 

node j to node j in the same number of the multiple  0 1t t  

period when no bicycle is leased or returned by the user. In 

summary, we can get: 
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Figure 2.  Transition states of all nodes 

 

Since all the elements in the transition probability matrix are 

nonnegative and the sums of elements in any row are all 1, P  is 

a random matrix. 

 

The bike-sharing Markov chain based on a city has a limited 

state and has the following properties: 

 

(1) Irreducible. Let C as a non-empty subset of the state space 

I , if i C and k C , then 0ikP  , it is called a closed set C . If all 

the states in the C are interconnected, the C is called an 

irreducible closed set  (Liu, 2008). If Markov Chain's state 

space is an irreducible closed set, it is called irreducible. The 

number of bike-sharing nodes in a city is limited, all belong to 

the same category and theoretically there is a bidirectional 

connectivity relationship between any two nodes. The bike-

sharing Markov chain theoretically has irreducible properties  

(Ching, 2006). 
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(2) Aperiodic. Each state in the Markov chain can only be 

accessed at periodic intervals, then it is periodic, otherwise it is 

aperiodic. According to the study of Feller (Prokhorov, 1965), 

if a state of an irreducible Markov chain (which can be regarded 

as a node state) is periodic, all states are periodic and have the 

same period. This is obviously different from the actual 

observation statistics of the bike-sharing nodes.  

 

Theoretically, if the irreducible transition probability matrix is a 

prime matrix, the Markov chain is aperiodic. According to Carl 

D. Meyer's research, if random matrix is irreducible and has at 

least one positive diagonal element, then it is a prime matrix 

(Langville, Meyer, 2011). Investigate the transition probability 

matrix nP , which is an irreducible non-negative square matrix 

with n diagonal elements (
jjP ). Investigation of the use of bike-

sharings, all the bicycles of all nodes in the period of 0t - 1t  are 

rented by the users or there is no return of bicycles to the 

original nodes, only at this time all the diagonal elements of 
nP  

are 0, which is inconsistent from the actual situation, non-zero 

diagonal elements are more prevalent. Therefore, the bike-

sharing Markov chain is non-periodic. 

 

(3) Positive-recurrence. That is, if and only if starting from state 

j, the stochastic process can eventually return to state j with 

probability 1, then state j is considered as recurrence. When the 

average return time of state j is finite, it is called positive-

recurrence. Liu Cihua argues in Stochastic Processes (Fourth 

Edition) (Liu, 2008) that irreducible finite Markov chains must 

be recurrence. It has been discussed above that the bike-sharing 

Markov chain has the finite and irreducible properties, so all the 

states in the bike-sharing Markov chain are positive-recurrence. 

 

If a Markov chain has the above three properties at the same 

time, then we get the following theorem (Parzen, 1999): 

 

Theorem: Any irreducible, aperiodic and positive recurrence 

Markov chain, the limit state probability exists only and 

independent of the initial probability distribution. This limit 

state is called steady-state and the limit state probability is 

called steady-state probability. According to this theorem, the 

steady-state linear equations of nodes (matrix equations) can be 

concluded as: 

 

P  , P is the bike-sharing Markov chain transition 

probability matrix (Bolch, et al., 2006). 

 

For n bike-sharing nodes, we have:  

 

                  0 1 1 0 1 1                  n nP                         (1) 

 

If  
j  is the steady-state probability of node j (or the ratio of the 

steady-state vehicle size of the node j to the total number of 

vehicles in all nodes), then 
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1
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j
j





                                            (2) 

 

The steady-state vehicle size of node j can also be assigned to 

j , then 

 

                      
1
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n

j
j

S



                                               (3) 

 

S  is the total number of bike-sharings in the city.                         

 

By solving steady-state linear equations groups of (1), (2) or (1) 

and (3), the steady-state probability or bike-sharing scale of 

each node and the time to reach steady-state can be obtained. In 

addition, combined with land area values of nodes, node cycling 

scheduling can be analysed. 

 

2.2 Difficulty Analysis of Markov Chain Solving 

In order to solve steady-state linear equations in 1.1, it is 

necessary to observe and calculate the state transitions of each 

node in the city over the  
0t -

1t   time period, so as to construct 

the transition probability matrix. For any node j, every 

destination node for each user to ride out the bicycle must be 

counted; or for any node j, every source node for each user to 

ride back the bicycle must be counted. On this basis, it’s 

possible to calculate the probability of bike-sharing transfer 

between any two nodes. 

 

The relationship between n nodes is n2, and the workload of 

observation and statistics increases exponentially with the 

increase of nodes. For first-tier cities, if the number of bike-

sharing nodes is on the order of thousands, the statistical 

probability of transition exceeds one millionth order ( 21000 ), 

for those companies that cannot track, observe and count the 

cycling data online, the workload is huge and the operability is 

poor; If the number of bike-sharing nodes in tier 2 cities is on 

the order of hundreds, the probability of observing statistics 

needs to be on the order of tens of thousands to hundreds of 

thousands, and the workload is considerable and the 

manoeuvrability is not strong. In addition, the initial value of 

the number of bicycles per node in the same time period needs 

to be counted, so n nodes have n numbers in total. If you add 

the total number of bicycles in a city shared by bike-sharing 

company, you need to count the total number of not less than 
2 1n n   . 

 

In addition, the Markov chain steady linear equations are more 

than the number of unknowns (the difference between the two is 

1), such equations are known as overdetermined equations. In 

the vast majority of cases, the overdetermined equations have 

no classical solution (Li, Liu, 2002). The least squares solution 

commonly used to solve overdetermined equations is an 

approximate solution to minimize the residuals. In the solution 

of overdetermined equations least square method, if Gaussian 

elimination method is used for matrix calculation, the time 

complexity is not less than 21
( )
3

O n , and the calculation is huge 

(Xia, Wei, 2009). Markov chain solution is usually more 

complicated (Liu, 2012). 

 

To sum up, in light of the fact that the bike-sharing operation is 

less demanding in accuracy but highly in response speed, it is 

necessary to simplify and optimize the algorithm for solving the 

problem such as the scale of node and scheduling time, thereby 

reducing the statistical workload and speeding up the solution. 

This can enhance the feasibility. 

 

3. NODAL BIKE-SHARING SCALE AND 

SCHEDULING ANALYSIS 

3.1 Two-node Bike-sharing Steady-state Scale Solution 

First, we begin the analysis from the simplest two-node bike-

sharing transition model. Suppose there are only two nodes 0 

and 1 in the city (see Figure 3). There is bicycle transfer 
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between the two nodes, suppose node 0 has 
0S bike-sharings at 

time 
0t , and node 1 has 

1S  bike-sharings at time 
0t . The sum of 

the number of bicycles at two nodes is S , 0 1S S S  . The two 

nodes were observed and statistical analysis, the probability that 

the bicycles ride and stored at node 1 after being lent from node 

0 is 
1  , 

1  > 0, then the probability that the bicycles being idle 

or returned at node 0 is 1- 
1
 ; At the same time, the probability 

that the bicycles ride and stored at node 0 after being lent from 

node 1 is 
1  , 

1 > 0, then the probability that the bicycles being 

idle or returned at node 1  is 1- 1 . 

 

 
Figure 3 Transition states of 2 nodes 

 

Construct transition probability matrix P :  
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Steady-state linear equation is P  . 

 

The value  here may be the bike-sharing steady-state 

probability vector, or the steady-state scale vector of nodes，let 

 0 1= ,   . 

 

(1) If 0 and 1 are the probability of the steady-state nodes, 

then: 
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Solve the above equations, we have: 
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(2) If 0 and 1 are the scale of the steady-state nodes, then: 
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Solve the above equations, we have: 
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S
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S
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From the conclusions (4) and (5) above, we can see that the 

node steady-state probability and scale have nothing to do with 

the initial value of node bicycle, which are related to the 

probability of riding in and riding out and the total initial 

number of bicycle in all nodes. At the same time, we can see 

that the two-node bike-sharing Markov chain overdetermined 

equations have classical solutions. 

 

3.2 N-node Bike-sharing Steady-state Scale Solution 

Suppose there are n bike-sharing nodes in the city, the transition 

probability matrix P  is as follows: 

 

00 01 0j 0(n-1)
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In fact, for a finite, irreducible and aperiodic Markov chain, the 

n-1 nodes other than the target node can be virtualized into the 

node v for the n-node case. In this way, the transition 

relationship between the virtual node and the target node can be 

conveniently counted, and the transition probability matrix of 

the virtual node v and the target node can be conveniently 

constructed. Based on this, we can continue to use the two-state 

Markov chain algorithm in 2.1, which can easily solve the 

steady-state scale of the target node, the steady-state arrival time 

and the number of bicycles over time, and carry out scheduling 

analysis. In n-node bike-sharing scale solving problem, we can 

use the above method to solve one by one. The above solution 

method can be referred to as a "virtual two-node vehicle steady-

state scale solution" algorithm. 

 

For node j, virtualize the other nodes as a whole to another node 

v, construct a virtual two-node transition probability matrix  vP  

as: 
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Without loss of generality, this paper mainly discusses the case 
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Next to discuss vjP , from the definition of analysis, vjP is the 

transition probability from virtual node v to node j. According 

to the description of the transition probability in 1.1, vjP  should 

be the ratio of the number of bicycles transferred from virtual 

node v to node j and the total initial number of bicycles at node 

v during the period 0t - 1t . Let 
j inS 

 be the number of bicycles 

transferred to node j from virtual node v, vS  be the total number 

of bicycles of virtual node v, then 0 j in vS S  ; Let 
jS be the 

initial number of the bicycle of node j,  S  be the total number 

of bicycles stored in all nodes, then v jS S S  , 0 ( )j in jS S S    . 

 

By definition, we have 
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then 
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Using the solution method of 2.1, let 
j  be the steady-state 

scale vector of node j, and the following results can be obtained: 
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Let 
j outS 

 be the sum of the number of bicycles rode out from 

node j and stored in other nodes during period 
0t -

1t , 

0 j out jS S  . According to the definition in 1.1, we have: 
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Substituting (6) and (8) into
v

P  , we have 
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It should be noted that in actual operation multiple 0t - 1t  periods 

may be taken for statistics in order to ensure the accuracy of 

calculation. In a 0t - 1t  period, the statisticians observe the initial 

number of bicycles of node j and the number of bicycles rode 

out from node j. After accumulating a plurality of groups, taking 

the average value, the calculation can be substituted into the (9). 

 

From the above, we can know that in order to solve the steady-

state scale value of node j, we only need to solve an 

overdetermined equation in 2-element one-order. For all n 

nodes, we can get the steady-state scale of all the nodes by 

solving n overdetermined equations in 2-element one-order one 

by one, and then calculate the steady-state arrival time and the 

scheduling time according to the method in 2.1. 

 

The algorithm only needs to count 2n data of bicycles rode in or 

out, as well as the initial number of bicycles at every node and 

the total number of bicycles (that is, the sum of the number of 

bicycles in n nodes). The algorithm proposed in this paper need 

to count the total number of data to be 3 1n  , much smaller than 

the traditional algorithm count 2 1n n   (The same is true for n 

=2. The premise of this algorithm is that the number of bicycle 

nodes in a city is much larger than 2). The time complexity of 

this algorithm is O(n) , which improves the feasibility of the 

algorithm to solve n-ary overdetermined equations, and reduces 

the work intensity significantly. 

 

The main characteristic of the algorithm provided in this section 

is that it considers only the overall relationship between the 

node to be solved and other nodes, and regards the other nodes 

as a whole as a virtual node. By calculating the bike-sharing 

transition between node and virtual node，as well as the initial 

number of bicycles of nodes, the simpler calculation is used to 

get the values of single-node bicycle size, steady-state arrival 

time and scheduling time. The algorithm proposed in this 

section is valid only for a single actual node to be solved, and 

the relevant value of the virtual node cannot be directly used. 

 

Further analysis, the steady-state probability of any node j under 

steady-state conditions is: 

 

                        j

j

ˆ ˆ
=

ˆ ˆ ˆ ˆS S S S

j in j

j in j out j in

S S

S S

 

  （ - )
                            (10) 

 

In (10), ˆ
j inS 

, Ŝ j out
 and ˆ

jS are the node j riding in, riding out and 

the initial scale data during the period 0t - 1t  under steady-state 

conditions. 

 

Under steady-state conditions, for node j, the number of 

bicycles riding in during the period 0t - 1t  is equal to the number 

of bicycles riding out, that is
out

ˆ ˆ=j in jS S 
, hen simplified (10), we 

have 

 

             j

j j

ˆ ˆ ˆ ˆ ˆ
= = =

ˆ ˆ ˆ ˆ ˆ ˆS S S S 0*S

j in j j in j j

j in j out j in j in

S S S S S

SS S S S

  

    （ - )
                (11) 

 
ˆ

j inS 
, Ŝ j out

 and ˆ
jS in (10) and (11) are the statistical values 

under steady-state condition，which are different from the 

initial and intermediate number of node j of one   period, and 

cannot be confused with each other. The ratio of the initial 

bicycle number or an intermediate number of a node of one-

time period to the total bicycle scale of all nodes cannot be 

directly used as the steady-state probability solution of a node. 

 

Then the steady-state probability solution space of the bike-

sharing steady-state equations is: 

 

                              0 11
ˆ ˆˆ

{ , ,..., }nS SS

S S S

                                  (12) 

 

3.3 Algorithm Rationality Analysis 

By comparing the steady-state probability value of the 

traditional solution method of steady-state equations with the 

algorithm of "virtual two-node vehicle scale solution" algorithm 

proposed in this paper, we can evaluate the rationality of the 

latter. 

 

From (1) and (2), n + 1 equations can be listed as follows: 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-2229-2018 | © Authors 2018. CC BY 4.0 License.

 
2233



 

 

 

          

00 0 10 1 20 2 0 0 1 01

01 0 11 1 21 2 1 1 11 1

0 0 1 1 2 2 11

0 1 2 1 10 1 1 1 2 2 1 1 1

0

* * * * *

* * * * *

...

* * * * *

...

* * * * *

j j nn

j j nn

j j j j j j n jn j

j n nn n n j n n n

p p p p p

p p p p p

p p p p p

p p p p p

     

     

     

     









      

    

    

    

    

1 1... 1n  

















   

 

First, remove the last equation and choose one equation from 

the rest of the equations as follows: 

 

When  0, 1j n   

 

           
 0 0 1 1 2 2 11

* * * *j j j n jn j
p p p p    

                  (13) 

 

In (13), let ij

i

g
=

S
ijp , 

ijg represents the number of bicycles from 

node i to node j during period 0t - 1t , and iS  represents the 

number of bicycles at node i at time 0t . 

 

The left side of (13) is substituted into the above transition 

probability value and the steady-state probability solution 

space( (12)), we have 

 

               0j 1j jj (n-1)j0 11

0 1 1

ˆˆ ˆˆg g g g
* + * +...+ * ... *

S S S S

j n

j n

SS SS

S S S S





                 (14) 

 

For node j, after sufficient observation the average value of 

bicycle scale based on multiple time periods is close to that of 

steady-state conditions, and it can be obtained 

 
ˆ

j jS S , 0 ( 1)j n    

 

Then use the above conclusion to simplify (14), we have: 

 

            

0 1 ( 1)0 11
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g
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Based on sufficient observational statistics, we have 

 

0 1 ( 1)
ˆg +g +...+g ...j j jj n j j jg S S     

 

Then 

 

0 1 ( 1)
ˆg +g +...+g ...j j jj n j jg S

S S

 
  

 

The above equation is equal to the right of equation (13)

（ j

ˆ
=

jS

S
π ），so the solution space of (12) can be regarded as 

the approximate solution of (13). 

 

Sum up every number in (12), we have 

 

0 1 1
ˆ ˆ ˆ ˆ... ...

1
j nS S S S S

S S

    
   

 

In conclusion, the solution of (15) approximates (1) and (2), 

which can be regarded as a set of approximate solutions for n-

node overdetermined equations of steady-state probability. Of 

course, the accuracy of the solution depends on the rationality 

of statistical methods for bike-sharing transition and the 

richness of data. 

 

4. ALGORITHM APPLICATION 

The following two questions are discussed based on the "virtual 

two-node vehicle scale solution" algorithm. 

 

Question 1: Suppose no one intervenes. At time 0t  (the first day 

is assumed), the node j and the virtual node v each has 
jS  and 

vS the number of bike-sharings. Solve the number of bicycles at 

node j after K days.  

 

This question can be solved by multiplying the vector by the 

matrix. 

 

Let   be the transition scale vector,  j= vS S ， then 

 j vp S S p  . 

 

The bike-sharing scale vector  )k（  of two nodes after k days can 

be obtained by multiplying  0 1S S and kP , and  kP  is the K-

steps transition probability matrix of bike-sharing, then: 
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To solve kP , we have 
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To observe k

vP , 10 1  , 10 1  then 
1 11 1   ＜ , when k 

reaches a certain value, 1 11 ) 0k   （ , then: 
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v
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The scale of bike-sharing at node j is approximately: 

 

1 1 1 1
j

1 1 1 1 1 1 1 1

( )v j vS S S S S
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       
   

   
 

 

In this case, the scale of bicycles at node j is the same as the 

steady-state scales (see (5)), and the node j can be considered as 

steady-state. 

 

When 1 11     is smaller, that is, the closer 1 1   is to 1, the 

faster the node enters the steady-state (the faster convergence). 

 

Question 2: Considering the influence of node area, assume that 

the maximum number of bicycles stored at node j is 
jb , to 

determine whether to manually adjust the number of bicycles at 

node j and when to adjust the start time. 
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To solve this problem, we first need to calculate the steady-state 

scale of node j. If the steady-state scale is larger than the 

maximum value stored by the node j, calculate the following 

linear equations to obtain the approximate arrival time of
jb . 

 

                            j v j v

k

vS S P b b                          (18) 

 

In this paper the experience of us is to first calculate the value 

of   1

j vS S P . If the number of bicycles transferred by the node in 

one step is greater than the maximum number of bicycles stored 

in the node j, the scheduling needs to be performed immediately 

(or the available area of the node is appropriately increased). 

Otherwise, solving the linear equations ((18)) yields a value of k, 

and the bike-sharing company should send someone to move 

the bicycle to another node or depot before the node j reaches 

this time. 

 

From another point of view, if the storage area is large enough 

that the maximum number of stored bicycles in a node is larger 

than the steady-state scale, it is not necessary for the bike-

sharing company to artificially increase the number of bicycles 

to fill up the space, thus only increasing the idle rate. 

 

5. CONCLUSION 

This paper aims at the problems of the scale and scheduling of 

bike-sharing. Based on the analysis of the applicability of the 

Markov chain method, this paper improves the traditional 

solving method for Markov chain equations，and proposes a 

"virtual two-node vehicle scale solution" algorithm,  which 

improves the solution speed of steady-state equation. In this 

paper, the calculation methods of node steady-state scale, 

arrival time and scheduling time are given, and the rationality of 

this method is demonstrated theoretically. Although the 

accuracy of the proposed algorithm is not as good as the least-

squares solution to Markov chain steady-state linear equations, 

the related statistical data acquisition and calculation are more 

convenient and faster. The algorithm is more feasible for the 

bike-sharing company with low accuracy and high response 

speed, which can be used by these companies to dynamically 

optimize the scale and schedule of bicycle delivery and enhance 

standardized management. 
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