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ABSTRACT: 

 

During Hurricane Irma’s passage over Florida in September 2017, many sections of the state experienced heavy rain and sequent 

flooding. In order to drain water out of potential flooding zones and assess property damage, it is important to map the extent and 

magnitude of the flooded areas at various stages of the storm. We use Synthetic Aperture Radar (SAR) and Interferometric SAR 

(InSAR) observations, acquired by Sentinel-1 before, during and after the hurricane passage, which enable us to evaluate surface 

condition during different stages of the hurricane. This study uses multi-temporal images acquired under dry condition before the 

hurricane to constrain the background backscattering signature. Flooded areas are detected when the backscattering during the 

hurricane is statistically significantly different from the average dry conditions. The detected changes can be either an increase or 

decrease of the backscattering, which depends on the scattering characteristics of the surface. In addition, water level change 

information in Palmdale, South Florida is extracted from an interferogram with the aid of a local water gauge as the reference. The 

results of our flooding analysis revealed that the majority of the study area in South Florida was flooded during Hurricane Irma.  

 

 

1.    INTRODUCTION 

During Sep 10th to Sep 13th 2017, Hurricane Irma, a catastrophic 

Category 5 hurricane, made landfall over Florida, causing 

severe flooding, which led to damage to properties and many 

death tolls in Florida. A major part of economic loss by the 

hurricane was attributed to flooding, which is induced by both 

heavy rainfall and storm surge. Since flooding can cause severe 

damage, flood monitoring and mapping is vital for authorities 

and decision-makers for water management and estimation of 

risks and economic loss. In addition, mapping flood extent and 

magnitude can provide valuable distributed calibration and 

validation information for hydraulic models of river flow 

processes (Mason et al. 2015). 

 

While mapping the extent and magnitude of flooding is 

important, it remains a challanging task. Currently, authorities 

rely heavily on the water gauges, which provide high temporal 

measurements of water levels. However, gauges are normally 

distributed sparsely, expensive to operate, and vulnerable to 

vandalism and hurricane strength winds. Optical remote sensing 

observations have been widely used to map flooding (e.g., 

Townsend and Walsh, 1998; Celik, 2010). However, they are 

inefficient during hurricane passages due to the hurricane’s 

thick cloud coverage. Radar remote sensing, as Synthetic 

Aperture Radar, which operates at all weather conditions, 

provide useful observations for flood mapping under cloud 

cover conditions. SAR-based detection also been widely used 

for detecting flood extent (e.g., Matgen et al. 2010; Horritt et al. 

2001; Pulvirenti et al. 2011). These methods use the amplitude 

observations, which can detect lateral changes in scattering 

environment due to inundation. The detection of flooding extent 

relies on several mapping algorithms (Matgen et al. 2011), 

including visual interpretation (Oberstadler et al. 1997), image 

texture algorithms (Schumann et al. 2005), image segmentation 

(Pulvirenti et al. 2011), histogram thresholding (Martinis et al. 

2009), statistical active contour modeling (Horritt et al. 2001) 

and multi-temporal change detection method (Townsend, 2001).   

 

In order to detect the flooding magnitude, SAR phase 

information becomes useful, as it can detect water level changes 

over wetlands with emergent vegetation (e.g., Wdowinski et al. 

2004; 2008; Kim et al. 2005; Gondwe et al. 2010; Oliver-

Cabrera and Wdowinski, 2016). The detection of water level 

changes requires interferometric SAR (InSAR) data processing. 

Oliver-Cabrera and Wdowinski (2016) have used ALOS and 

Radarsat-1 data to generate detailed maps of water level 

changes in the tidal zone in Louisiana Coastal Wetlands. In 

addition, Lu and Kwoun (2008) have conducted European 

Remote Sensing 1 and 2 (ERS-1/ERS-2) and Radarsat-1 InSAR 

to study water level changes beneath swamp forests of coastal 

wetlands of southeastern Louisiana.  

 

Previous SAR-based flooding detection studies used various 

satellites, including the ERS-1/ERS-2, ENVISAT, Radarsat-1, 

TerraSAR-X, COSMO-SkyMed (Townsend, 2001; Bazi et al. 

2005; Mason et al. 2010; Oberstadler et al. 1997; Pulvirenti et 

al. 2011). In the past three years, more and more attention has 

been drawn by Sentinel-1 A and B satellites, which were 

launched in April 2014 and April 2016 respectively by 

European Space Agency (ESA) in the frame of the European 

Union’s Copernicus Program (Twele et al. 2016). Both of the 

satellites are equipped with C-band SAR, and the 

interferometric wide swath (IW) is the by default mode, which 

acquires the image in a dual-polarized manner with VV/VH 

polarization.  
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In this study, for the flood extent mapping, we take advantage 

of Sentinel datasets and use a quantitative statistical method 

based on multi-temporal datasets. The method can not only 

distinguish the flooded and nonflooded areas, but also provide 

the confidence of flooding detection for every single pixel. 

Next, we use one image acquired during the Hurricane Irma and 

another one after to form an interferogram, and extract the water 

level change information of a region named Palmdale in South 

Florida. In the end, we use Everglades Depth Estimation 

Network (EDEN) data to verify our results of flooding extent 

mapping.  

 

 

2.   STUDY AREA 

 

The study area is part of the southernmost Florida, which 

features subtropical climate. Everglades national park locates in 

this region, and it includes pine rocklands, wetland, large areas 

of marshes, prairies and linear shaped sloughs.  Marshes take a 

remarkable proportion, and they are periodically or continually 

inundated, depending on hydroperiod. In addition, Big Cypress 

National Preserve locates in the northwest to Everglades 

national park, and it features hammocks, cypress swamps, 

mangroves and marshes. Moreover, Florida mangroves 

ecosystem locates along the coasts of the Florida Peninsula and 

also Florida keys. The urban locates along both the east and 

west coasts, and it has a relatively smaller proportion of area 

than the countryside. The coverage of two study areas are 

shown in Figure 1 as below.  

 

 

 
Figure 1. (a) Location map of our two study areas within two 

red frames in south Florida. Both areas are shown as SAR 

amplitude images that overlay a Google Earth satelite image as 

background. The southern study area consists of the Everglades 

National Park and surounding areas and the northern study area 

consists of Palmdale wetlands. (b) A close up image of the 

northern study area.  

 

 

3.    METHODOLOGY 

We map both the extent and magnitude of the flooding 

conditions induced by Hurricane Irma, during its passage over 

Florida in September 2017. Our research is based on Sentinel-

1A and Sentinel-1B datasets. We assume two scenarios of 

backscattering on the surface during the flooding event, and it is 

shown in Figure 2 as below: 

 

 
Figure 2. Backscattering characteristics of tall and short 

vegetation land covers under dry and flooded conditions. Notice 

that flooded conditions increase backscattering in tall vegetation 

due to double bounce scattering, but reduces the scattering in 

short vegetation areas (after Bourgeau-Chavez et al. 2005). 

 

The first row shows the scenarios in tall plants like forests, and 

the second row scenarios in short plants. For the first row, when 

dry, there is only backscatter from the soil or tree. However, 

when flooded, SAR will receive double bounce signal. If the 

forest is very dense, then there will no difference between the 

dry and wet conditions, since C-band is not able to penetrate the 

forest canopy. For the second row, when the short plants 

vegetation like marshes are flooded, the signal will reflect away 

from SAR, and the received signal could be very weak. 

 

3.1  Mapping Flooding Extent 

 

We developed a statistical method to detect the extent of 

flooding independent of surface scattering conditions, using a 

pixel to pixel approach. A test quantity t is formed as below: 

 

                                t = (W - [D]) / σ                                (1) 

 

where      t is the normalized scattering change value 

W is pixel value in the wet image  

[] is the average operator 

[D] is average value of each pixel from all the three 

dry images 

σ is standard deviation of each pixel representing the 

deviation among the dry images 

 

We calculate σ of each pixel from all the dry images. The test 

quantity t indicates the separability of pixel value between the 

wet and dry conditions. t represents the signal-to-noise ratio 
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(SNR) of each pixel. When the difference between wet and 

average dry image is larger than 1 σ, then flooding is detectable, 

because the difference is significantly larger than the 

background noise. Otherwise, it is non-flooded or undetectable, 

due to the relatively large noise.  

 

By thresholding on test quantity t, we set three classes. First, 

when t > 1, which means W – [D] is larger than 1 σ, there is 

significant increase of backscattering, and flooding is detected 

due to double bouncing. Second, when t is between -1 and 1, 

i.e., absolute value of W – [D] is smaller than 1 σ, W – [D] 

cannot be distinguished from the background noise. Thus, it is 

classified as ‘Non-flooded or Undetectable’. At last, when          

t < -1, absolute value of W – [D] is significantly larger than 1 σ 

as well, and flooding is detected due to signal reflecting away 

from water surface.  

 

3.2  Estimating Flooding Magnitude 

 

Two SLC datasets are used to form a interferogram. First, they 

are coregistered with subpixel level, and the interferogram is 

formed. Next, we deburst the image and merge the subswath. 

Though Florida is generally flat, we still remove the 

topographic phase in order to be more precise.  Unwrapping 

result from Statistical-Cost, Network-Flow Algorithm for Phase 

Unwrapping (SNAPHU) was wrong because of the low SNR in 

the surrounding area. Consequently, we manually unwrapped 

the interferogram by counting the number of fringes. 

 

The unwrapped interferogram is converted to vertical water 

level change by Eq. (2). 

 

                         L= 
φ
unw
λ

-4πcosθ
                                            (2) 

 

where  L is the water level change in meter unit 

φunw is unwrapped phase in radian unit 

λ is wavelength, i.e., 5.6cm 

θ is the incidence angle 

 

This method results in a temporally and spatially relative water 

level change image. In the end, we use a water gauge locating in 

the study area to calibrate all the relative measurements to 

absolute measurements.  

 

 

4.   DATA AND DATA PROCESSING 

This study uses Sentinel-1 SAR data acquired in C-band. This 

constellation consists of two satellites, Sentinel-1A and 

Sentinel-1B in the same orbit plane (after ESA Sentinel Online, 

https://Sentinel.esa.int/web/Sentinel /missions/Sentinel-

1/overview). Comparing with the constellations mentioned 

above, Sentinel-1 products are more applicable to flooding 

mapping in terms of the high revisit frequency. The revisit 

period is only 12 days for each satellite, 6 days for the 

combined constellation, and product delivery is rapid, which 

makes it a good resource for flood monitoring. The C-band 

microwave is able to penetrate clouds and work regardless of 

weather conditions during day and night. In order to study the 

backscatter signature of land surface on both wet and dry 

conditions, we use 4 Sentinel-1A acquisitions for flooding 

extent mapping, all of which were acquired on ascending pass 

direction. The data is in GRD format, and the spatial resolution 

is 20 * 22m for range and azimuth. Multi-temporal datasets are 

used since we want to constrain the backscattering signature on 

the dry condition, and it provides a reference to further detect 

the flooded areas. Moreover, one Sentinel-1A and one Sentinel-

1B Single Look Complex (SLC) acquisitions are used for 

magnitude mapping, and both of them were acquired on 

descending pass direction. The spatial resolution is 2.7-3.5 * 

22m (depending on incidence angle) for range and azimuth. All 

the images were acquired in 2017 during the summer season. In 

addition, we use only the VV polarization. The accuracy of VV 

polarization of Sentinel data is slightly higher than that of VH 

polarization, since VH polarization has higher backscatter 

variability of scatters on land and low level of backscatter of 

vegetated area, which could be interpreted as water body (Twele 

et al. 2016). The basic information of all acquisitions are 

summarized in Table 1. 

 

ID Date Weather Use of 

Mapping 

Data 

Format 

1 Jul 24th Dry Extent GRD 

2 Aug 17th Dry Extent GRD 

3 Aug 29th Dry Extent GRD 

4 Sep 10th Wet Extent GRD 

5 Sep 12nd Wet Magnitude SLC 

6 Sep 18th Dry Magnitude SLC 

Table 1. Basic information of all SAR and InSAR acquisitions 

 

In addition, we also used land cover data for analysis. The land 

cover classification shapefile data is extracted from Florida Fish 

and Wildlife Conservation Commission. Land covers are 

dissolved into short plants, tall plants, urban, mangrove and 

water body. The classification is based on the assumption 

shown in Figure 2: when flooded, short plants show less 

normalized radar cross section, or sigma nought, due to 

reflection, while the rest of land cover classes is expected to 

have sigma nought increase due to double bouncing. Water 

class is considered as permanent water body, which is excluded 

from this study. Figure 3 shows the distribution of four land 

covers.  

 

 
Figure 3. Land covers map of the southern part of the study 

area, based on four main classes. All the land cover classes are 

displayed with 40% transparancy. 

 

At last, for the purpose of validation, we extract water depth 

data from Everglades Depth Estimation Network (EDEN). We 

compared water depth distribution map from Cape Sable 

Seaside Sparrow (CSSS) Viewer, USGS and EDEN water 

gauges data with our map of flooding extent. We verify our 

results by calculating the accuracy of flooding detection. 

 

Sentinel Application Platform (SNAP) is used for preprocessing 

all the SAR images. We follow standardized procedure to 

process GRD and SLC datasets in order to get sigma nought 
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images and interferograms. The diagrams for GRD and SLC 

preprocessing procedure are shown as below in Figure 4.  

 

 
Figure 4. Diagrams of both GRD and SLC data preprocessing 

steps. The left column is for GRD and the right one is for SLC 

data resepectively. 

 

For flooding extent mapping, we apply the methodology in 

Session 3.1 on the output sigma nought image, as shown in 

Figure 4. The results for both extent and magnitude mapping are 

shown in Session 5.  

 

 

5.      RESULTS 

5.1   Flooding Extent Mapping 

This session demonstrates result of delineating flooding extent. 

Based on the multi-temporal data, we develop a quantitative 

way to detect the flooded area by thresholding on pixel value, 

i.e. sigma nought. This method takes into account contributions 

from various scattering environments. The whole process is 

implemented in ArcGIS 10.4 software. We use the three pre-

hurricane images to calculate the background scattering 

characteristics in “dry” conditions. The background scattering 

level varies in the range of -20 dB to 30 dB, depending on the 

scattering environments. The average image of the three dry 

images is first calculated by land cover. Next, based on the 

result, we averages all the pixels within one land cover. 

Consequently, we gain a temporal spatial average for each land 

cover. In addition, the spatial average of the four land covers in 

the wet image (acquired during Hurricane Irma) is calculated as 

well. Table 2 below shows the comparison between the two 

averages by land cover:  

 

 

 

 

 Dry Wet Wet - Dry 

Short Plant -8.43 -10.22 -1.79 

Tall Plant -7.76 -7.14 0.62 

Mangrove -8.64 -7.85 0.79 

Urban -8.47 -7.54 0.93 

Table 2. Average dry and wet scattering values according to the 

four land cover classes (unit: dB) 

 

Table 2 shows sigma nought decreases in the short plants and 

increases in the other three land covers by comparing the wet 

image with the average of dry images. For all land covers, the 

difference is around -2 to 1 dB. It is consistent with the 

assumption that short plant was submerged by the flooding, 

which causes reflection of the radar signal, while double 

bouncing occurred on tall plants, urban and mangroves, 

resulting in increase of backscattering.   

 

Next, after applying the methodology in 3.1, we are able to get 

the distribution of flooding extent with confidence of detection. 

Figure 5 below shows the distribution of different classes of the 

normalized scattering change value t. 

 

 
Figure 5. Normalized scattering change values mapped 

according to the detection confidence. Blue pixels show 

detected scattering decrease, red pixel show detected increase, 

and white pixel indicates the change is not significant, i.e. non-

flooded or undetectable. The shades of blue and red mark the 

detection confidence, as presented in Table 3. Yellow frames 

mark the zoomed-in areas presented in Figure 6. 

 

Range of  t value Color Meaning 

t <-3 Deep Blue Flooding ( >99.7% 

confidence) 

-3 < t <= -2 Middle Blue Flooding (95-

99.7% confidence) 

-2 < t <= -1 Light Blue Flooding (68-95% 

confidence) 

-1 < t <= 1 White Non-flooded or 

Undetectable 

1< t <= 2 Light Red Flooding (68-95% 

confidence) 

2< t <=3 Middle Red Flooding (95-

99.7% confidence) 

t > 3 Deep Red Flooding ( >99.7% 

confidence) 

Table 3. Classes of normalized scattering changes according to 

the color ramp in Figure 5 

 

Table 3 shows that for both detected increase and decrease t, we 

divided into 3 subclasses according to the absolute value of t, 

which matches with the graded shades of red and blue colors. 
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Figure 6. Normalized scattering change values (t) and their land 

cover characteristic obtained from satellite images in three 

selected locations. (a), (c) and (e) are zoom-in view of three 

yellow frames in Figure 5. (b), (d), (f) are the corresponding 

optical remote sensing images. The color ramp of the 

normalized changes is the same with Figure 5. (a) and (b) 

Changes in the northern Shark Valley Slough showing 

scattering decrease over short vegetation, scattering increase 

over tree islands with tall vegetation (c) and (d) Changes in the 

western Everglades showing mostly scattering increase over 

forests and scattering decrease over areas with short vegetation. 

(e) and (f) Changes in eastern Everglades along the boundary 

with urban area, demonstrating scattering increase in the up 

right corner urban area and scattering decrease for the rest of the 

image. The elevated linear shape structure also shows increased 

backscattering. 

 

Figure 6 shows three types of environment. What is common 

among the three is the varying land covers mixing together. 

Figure 6 well indicates the effectiveness of the proposed 

mapping method. For example, subplot (a), (c) and (e) clearly 

show colors in contrast between the short plant (marsh) and tree 

islands, forest and urban area. Subplots (b), (d) and (f) provide 

the evidence of the distribution of different land covers. 

Obviously, majority of the features in (a), (c), (e) match well 

with features in (b), (d), (f). The backscattering behavior is 

consistent with the assumption shown in Figure 2. Next, Figure 

7 shows the binary mapping of flooding extent. 

 

 
Figure 7. Binary map showing the extent of flooding induced by 

hurricane Irma. Blue indicates all the flooded areas, which is the 

sum of flooding area in Figure 5. White color indicates 

nonflooded or undetectable areas. 

 

From Figure 5 and 7, it is clear that the lower middle short plant 

land cover is submerged (sigma nought decrease), and the other 

land covers show dominantly double bouncing (sigma nought 

increase). Thus, it is consistent with assumption and the 

statistical analysis in the previous parts. In addition, majority of 

areas of short plants were detected as flooding with higher 

confidence, while a small portion of areas in the other three land 

covers are classified as non-flooded or undetectable. This is 

because for the mangrove and other tall plants, even though 

double bouncing is the dominant mechanism controlling the 

backscattering, there are other factors, such as wind effects, 

defoliation and trees falling down during Hurricane Irma. In 

addition, strong precipitation induces signatures in SAR images 

as well (Danklmayer and Chandra, 2009). However, in this case 

study, these effects are not strong and remarkable.  

 

It is worth noticing that all the datasets used in this study are 

acquired during summer season in order to minimize the 

standard deviation, i.e. the spread of backscattering. In the 

beginning we included another three SAR image acquired 

during spring 2017 in the multi-temporal datasets, but the 

standard deviation is increased due to signal of seasonality, and 

hence absolute value of t decrease, resulting in significantly 

more areas fall into non-flooded or undetectable class. Thus, 

adding more images acquired from other seasons does not help 

constrain the backscattering signature, and makes the 

detectability much less.  

 

5.2   Flooding Magnitude Mapping 

 

We use two SLC images, acquired in Sep 12nd and 18th 

respectively as shown in Figure 1b, to form an interferogram in 

a region called Palmdale in South Florida. We choose this place 

because of sparse density of forest which makes possible signal 

double bouncing during the hurricane. Double bouncing results 

in good coherence betwen these two acquisitions. The 

interferogram is shown as below in Figure 8. 
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Figure 8. (a) Interferogram in Palmdale.  A-A’ is the transect for 

the forested area. (b) The optical satellite image of the same 

area. The forested wetland is visible from the image. 

 

Since the unwrapped phase and water level changes are 

temporally and spatially relative measurements, we need an 

water gauge with absolute measurements to calibrate the whole 

area. A United States Geological Survey (USGS) water gauge 

was found and the location is marked in Figure 8. The site 

number is 02256500, and the site name is ‘FISHEATING 

CREEK AT PALMDALE, FL’. The unwrapped phase with 

water level changes and water gauge time series are plotted in 

Figure 9(a) and 9(b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

 
Figure 9. (a) Unwrapped phase and calibrated water level along 

the Plamdale forested wetland transect (red transect in Figure 8). 

The green circle marks the position of the water gauge on the 

transect. (b) Water level time series of the gauge between Sep 

8th and 20th (after USGS National Water Information System). 

Two red vertical lines mark the acquisition times of two SAR 

SLC images (Sep 12nd and 18th) used to form the interferogram 

shown in Figure 8.  

 

As shown in Figure 9(b), this gauge is able to provide precise 

water level change between two acquisition time points, which 

is 0.515m. Consequently, the water level change of the whole 

forested wetland area between these two acquision times is 

solved by calibration with the water gauge measurement, as 

illustrated in Figure 9(a). This method expands the precise 

measurement of one single water gauge to an area as large as 29 

square kilometers meander area.  

 

From Figure 9(a), the western side of transect has more water 

level change than the eastern side. We can conclude that from 

Sep 8th to 13rd, the water level has been accumulating, as shown 

in Figure 9(b).  The western side of the transect could have a 

higher water level than the eastern side in Sep 12nd when the 

first image is acquired. After 6 days, the water flew out and 

became flat surface, and resulted in more water level change in 

the western side of transect than the eastern side. The water 

flow during this period of time was eastward, all the way down 

to Lake Okeechobee.  

 

 

6.   FLOODING EXTENT VALIDATION 

 

We use data from EDEN as a reference to verify our own extent 

of flood. Figure 10 shows the validation zone, where EDEN 

indicates the whole zone has a higher water depth within the 

rectangle shaped zone.  
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Figure 10. The validation zone within the red rectangle frame 

overlaying with extent of flooding map.  

 

The validation zone consists of two land covers- both short 

plants and tall plants. There is 98.7% area of short plants is 

correctly classified as flooded, while 87.7% area of tall plants is 

detected as flooded. The statistics of validation is summarized 

as below in Table 4. 

 

 Success rate of 

detection (%) 

Rate of 

misdectection (%) 

Short Plants 98.7 1.3 

Tall Plants 87.7 12.3 

Total 98.3 1.7 

Table 4. Results of flooding extent mapping validation 

 

In addition, we compared 20 EDEN water gauges and 10 USGS 

water gauges with our flooding extent mapping. All of the 

gauges show the water level was high in Sep 10th 2017, which 

indicates that the surronding area was probably flooded. Our 

flooding extent mapping has 100% accuracy comparing with 

these water gauges.  

                                       

7.    CONCLUSION 

We use multi-temporal Sentinel-1A and Sentinel-1B datasets to 

map both extent and magnitude of flooding induced by 

Hurricane Irma which made landfall in Florida on Sep 10th 2017. 

Four Sentinel-1A datasets are used to delineate the extent of 

flood. In addition, one Sentinel-1A image and one Sentinel-1B  

image are used to form an interferogram, the derivative of 

which is water level change.  

 

The study area is classfied into 4 land covers, which are short 

plant, tall plant, urban and mangrove. It is assumed that these 

land covers feature different characteristics of signal responses 

while flooded. When short plant vegetation is flooded and 

submerged, it would lead to decrease of backscattering, while 

double bouncing occurs on the other three land covers, and thus 

increase of backscattering.  

 

First, we take a quantitative approach to delineate the extent of 

flooding. The average of all three dry images is calculated by 

land cover. By comparing with the wet image, it is found that 

the sigma nought change is consistent with the assumption. 

Next, we use t = (W - [D]) / σ  to statistically detect the 

separability between wet and average dry images in a pixel-by-

pixel manner, generating map of flooding extent with the 

confidence of detection. We found that majority of the study 

area is flooded, especially for short vegetation in the middle of 

the study area. In addition, conspicuous contrast between short 

plant vegetation like marshes and tall plants vegetation like  

forest, tree islands and urban area was discovered.  It shows the 

good effectiveness of the flooding detection approach, since 

different land covers are well distinguished.  

 

At last, SLC data are used for magnitude mapping. In this case, 

interferograms formed by two SLC images is manually 

unwrapped. The unwrapped phase infomation is converted to 

water level change between two acquisitions. A water gauge 

locating within the study area is used as reference to calibrate 

the whole study area. The result shows more water level change 

in the western side of transect than the eastern, which indicates 

higher water level in the western side in Sep 12nd. After Sep 13rd 

when Hurrican Irma faded away, the water level dropped and 

the accumulated water flew out into Lake Okeechobee.  
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