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ABSTRACT: 

 

In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR 

(differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, 

large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface 

deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special 

decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic 

Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of 

coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, 

we found that datasets acquired by ALOS-2 had the best monitoring effect. 

 

 

1. INTRODUCTION 

Over the past couple of years, the geologic hazard occurred 

frequently in China. In 2017, more than 7000 geological 

disasters occurred, which caused 327 deaths and direct 

economic losses of 3 billion 540 million yuan. More than 85% 

of the geological hazards occurred in the mountainous areas 

covered by many vegetation in South and South China, where 

the natural conditions were changeable that the bench marks 

and GPS points in traditional survey technology were easily 

destroyed. At the same time, the complex terrain also made the 

field survey extremely difficult, greatly reducing the timeliness 

of disaster monitoring. Therefore, as an all-day and all-weather 

monitoring means of remote sensing, D-InSAR technology has 

become the better choice for the deformation monitoring (Dong, 

2018; Zhao 2012). 

 

Although the monitoring precision of the land surface 

deformation is enable to achieve centimeter level, even 

millimeter level, along the line of sight (LOS), it still has a lot 

of restrictions (Ge, 2013) : 1) The loss of coherence, or 

decorrelation, will result in the inability of the technology to 

correctly invert the changes in geophysical properties and 

surface deformation monitoring (Massonnet, 1998); 2) The 

change in phase gradient due to changes in surface deformation 

gradient ; 3) The phase delay due to atmospheric fluctuations. 

 

For repeat-pass interferometry, the master and slave images 

must first meet the coherence condition, i.e. they should 

maintain high coherence in time and space. If the coherence is 

low or completely lost, the correct phase unwrapping result 

cannot be obtained, and the interference and differential 

interference results that can reflect the true deformation cannot 

be obtained. The factors that influence the decorrelation include 

temporal decorrelation, spatial decorrelation, imaging area 

geomorphology, geophysical activity, and data processing. 

Among them, spatial decorrelation is affected by two 

observation positions, which is closely related to the parameters 

of the selected data. This article quantitatively analyze the 

influence of several components (incident angle, wavelength, 

frequency bandwidth of LFM signals, etc.) related to sensor 

parameters on spatial decorrelation, and compares and analyzes 

the monitoring applicability of each sensor. Finally, the 

TerraSAR-X, COSMO-SkyMed, Sentinel-1, and ALOS-2 data 

in Guizhou were selected for verification. 

 

  

2. SPATIAL DECORRELATION 

Spatial de-correlation is the result of radar waves interacting 

with ground objects at different angles of incidence. Its 

mathematical definition can be expressed by the following 

formula: 

 

                        (1) 

 

Where  = surface scattering decorrelation component 

          = volume scattering decorrelation component 

Surface scattering decorrelation: On the same reference plane, 

due to the difference in the viewing angles of the two SAR 

images, the ground reflection spectrum is not exactly the same, 

and the relative shift of the reflection spectrum of the two 

images results in incomplete agreement of the echo signals. 

Therefore,  . 

 

The volume scattering decorrelation depends on the penetrating 

power of the electromagnetic wave, which is related to the 

wavelength of the electromagnetic wave and the penetrability 

and volume of the scatterer. In the vegetation coverage area 

(forest, farmland, etc.),  dominates  (Langley, 

2007). 
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2.1 Surface scattering decorrelation 

At present, a large number of documents (Liu, 2016; Zhao, 

2010) have described the geometric baseline error in detail, and 

the frequency-filtering technique can greatly reduce the 

geometric decorrelation caused by the baseline. However, in the 

monitoring of geologic hazards, the monitoring area is usually a 

mountainous terrain, and the local slope will also contribute to 

spatial de-correlation. Although multi-view filtering and other 

processing can effectively suppress the noise and reduce the 

error, the deformation information of the signal blind zone 

caused by the terrain features and the SAR system parameters 

cannot be recovered. 

 

The model of surface scattering decorrelation related to slope 

and incident angle can be represented by the following formula: 

 

                     (2) 

 

where  = Light speed 

  = The length of effective baseline (vertical baseline) 

  = Wavelength 

  = The target-to-satellite distance 

  = The frequency bandwidth of LFM signal 

  = The incident angle 

  = The slope angle 

 

From equation (2), it can be seen that in the case of the same 

vertical baseline, different sensors have different resistance to 

surface scattering decorrelation caused by . Figure 1 shows the 

variation of surface scattering decorrelation for each sensor at 

different slope angles. 

 
Figure 1 The relationship between surface scattering 

decorrelation and slope angle 

 

Obviously, the coherence sharply decays when the slope angle 

approaches the incident angle, which means that for each sensor, 

there is a critical slope range determined by the sensor 

parameters and the vertical baseline. The formula for the critical 

slope range can be obtained from equation (2): 

 

     (3) 

 

Researchers can use the a priori information (such as SRTM 

data) to calculate the slope of the study area, and then use the 

formula (3) to select the ideal sensor data. 

 

2.2 Volume scattering decorrelation 

According to literature (Askne, 2005), the volume scattering 

decorrelation model for vegetation coverage can be expressed as: 

                  (4) 

 

where  =  

           = The empirically defined coefficient, which can be 

considered to be related to some sort of two-way forest 

transmissivity. 

           = Vegetation height 

 

From equation (4), it can be seen that the volume scattering 

decorrelation is inseparable from the system parameters and 

ground parameters. 

 

Taking Sentinel-1 as an example, assuming that , 

 , the relationship between 

volume scattering correlation and vegetation height is shown in 

Figure 2. 

 
Figure 2 The relationship between volume scattering 

decorrelation and vegetation height (under different ) 

 

Assuming that  and , under different 

sensor parameters, the relationship between volume scatter 

decorrelation and vegetation height is shown in Figure 3. 

 

It can be seen on the above two figures that: 1) With the 

increase of vegetation height, the volume scattering 

decorrelation decays continuously, and with the increase of the 

two-way forest transmissivity ( ), the decay rate of volume 

scattering decorrelation decreases; 2) In the same two-way 

forest transmissivity, the L-band sensor (ALOS-2) has the 

lowest sensitivity to vegetation height, followed by the C-band 

sensor (Sentinel-1), and the X-band sensors (COSMO-SkyMed 

and TerraSAR-X) are most sensitive. This result shows that the 

wavelength is dominant in the volume scattering decorrelation 

compared to other sensor parameters. 
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Figure 3 The relationship between volume scattering 

decorrelation and vegetation height (under different sensor 

parameters) 

 

 

 

 

 

3. DATA PROCESSING ANALYSIS 

This section uses four pairs of datasets, selected by TerraSAR-X, 

COSMO-SkyMed and Sentinel-1 in Guiyang City and ALOS-2 

in Liupanshui City, for actual data experiments to verify what is 

described in Section 2. 

 

3.1 Experimental Data and Area 

The experimental area was selected in Guiyang City, Guizhou 

Province and Liupanshui City, where the topography is 

fluctuating, the air humidity is high, the vegetation biomass is 

abundant, which causes serious decorrelation and provides 

favorable conditions for the analysis of interference restriction. 

Since the data coverage area of ALOS-2 does not overlap with 

the other three sensors, we chose two regions with similar 

natural conditions in the ALOS-2 coverage area and the overlap 

of the other three sensors, Region 1 and Rigion 2 as shown 

below (Figure 4). 

 
Figure 4 The coverage area of SAR data 

 

Table 1 shows the detailed parameters of the selected data. 
Sensor Selected date Time-baseline(days) Vertical-baseline(m) Bandwidth(MHz) Distance(km) Incident angle(°) Wavelength (cm) 

TerraSAR-X 
20170728 

22 208 150 613.7 35.3 2.4 
20170819 

COSMO-SkyMed 
20170803 

20 400 93 767.7 37.2 2.4 
20170823 

Sentinel-1 
20170725 

24 93 48.3 875.1 39.3 5.66 
20170818 

ALOS-2 
20170611 

46 183 79.4 799.4 39.67 23.6 
20170806 

Table 1 The parameters of SAR data 

 

3.2 Results and Analysis 

The SRTM-DEM, with resolution of 30m, was selected to 

perform slope inversion for Region 1 and Region 2. The results 

are shown in Figure 5(a) and (b). 

After extracting the coherence coefficients of the four groups of 

interference pairs, we have obtained the following results in 

Figure 6 (a)~(d). 

 

For a more intuitive analysis, we conducted a statistical analysis 

of the four results, which are shown in Figure 7 (a)~(d) and 

Table 2. 
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 (a)   (b)  

Figure 5 Slope in Region 1 & Region 2 

 

    

(a) TerraSAR-X (b)COSMO-SkyMed (c)Sentinel-1 (d)ALOS-2 

Figure 6 Coherence value of the four groups of interference pairs 

 

  

a TerraSAR-X b COSMO-SkyMed 

  

c Sentinel1 d ALOS-2 

Figure 7 Histogram of the four groups of interference pairs 
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Data Min Max Mean StDev 

TerraSAR-X 0 0.801715 0.214061 0.113214 

Sentinel1 0 0.995223 0.355915 0.183840 

COSMO-SkyMed 0 0.664783 0.188541 0.098797 

ALOS-2 0 0.996479 0.857580 0.152360 

Table 2 The statistical results of the four groups of interference pairs 

 

As can be seen from Figure 6, the overall coherence coefficient 

of ALOS-2 is high and continuous; the coherence coefficient of 

Sentinel1 is the next highest, and the continuity is worse than 

ALOS-2, and there are many low coherence gaps; TerraSAR-X 

and COSMO-SkyMed have the lowest coherence coefficients 

and are very fragmented. From Figure 7 and Table 2, it can be 

seen that : 

 

 
 

The content described in Section 2.2 is proudly proved. 

 

 

4. CONCLUTION 

This paper analyzes the applicability of the current mainstream 

SAR systems in vegetation coverage from two aspects: surface 

scattering decorrelation and volume scattering decorrelation. 

Through comparison and analysis of data, the SAR system, 

ALOS-2, with better coherence coefficient can obtain better 

SAR Interference results in topographically variable vegetation 

coverage area. This is of great significance for obtaining more 

accurate geo-hazard deformation monitoring results. 
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