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ABSTRACT: 

Hyperspectral remote sensing is a completely non-invasive technology for measurement of cultural relics, and has been successfully 

applied in identification and analysis of pigments of Chinese historical paintings. Although the phenomenon of mixing pigments is 

very usual in Chinese historical paintings, the quantitative analysis of the mixing pigments in the ancient paintings is still unsolved. 

In this research, we took two typical mineral pigments, vermilion and stone yellow as example, made precisely mixed samples using 

these two kinds of pigments, and measured their spectra in the laboratory. For the mixing spectra, both fully constrained least square 

(FCLS) method and derivative of ratio spectroscopy (DRS) were performed. Experimental results showed that the mixing spectra of 

vermilion and stone yellow had strong nonlinear mixing characteristics, but at some bands linear unmixing could also achieve 

satisfactory results. DRS using strong linear bands can reach much higher accuracy than that of FCLS using full bands. 

1. INTRODUCTION

Chinese historical heavy-color painting is an important form of 

Chinese traditional paintings, which has great historical and 

cultural values. There were many kinds of pigments used in 

Chinese historical heavy-color paintings, and most of them 

were mineral pigments(Wu et al., 2014). In addition, vegetal 

pigments and glues suffer more from oxidative deterioration 

than mineral pigments(Yan, 2012). Therefore, most of the 

ingredients preserved in Chinese historical heavy-color 

painting are mineral pigments. There has always been a great 

deal of interest in historic artwork with respect to their cultural 

significance and the physical composition of their materials. 

Through the analysis of ancient paintings' pigments, the 

researchers can authenticate the date and origin of cultural 

relics. It can also provide important reference information for 

the preservation and restoration of cultural relics by the 

analysis(Cloutis et al., 2011). 

At present, there was few related study on the quantitative 

analysis of mineral pigments on Chinese ancient paintings 

based on hyperspectral remote sensing, but had been identified 

as an important development direction of cultural relic research 

in China(Tong et al., 2016). The studies of the spectral mixing 

model of pigments on Western oil paintings started since 2000s. 

The researchers used spectral unmixing algorithm to solve the 

contents of different pigment components in the mixture, which 

provided important reference information for the restoration 

and historical research of ancient paintings(Balas et al., 2003). 

However, the Western oil paintings have thick pigment layer, 

which is mixed with the substrate and attached to the surface of 

a plate carrier (Dupuis and Menu, 2006). In contrast, Chinese 

historical heavy-color paintings have much thinner pigment 

layer, which is integrated with the carrier background (such as 

Xuan paper), and what spectral mixing model is suitable for 
them need further study. 

Spectral mixing models can be roughly divided into linear 

mixing model and nonlinear mixing models (Asadzadeh and de 

Souza Filho, 2016) However, linear mixing model is the most 

commonly used model, which is simple and has high practical 

value (Chen et al., 2013). A study showed that the spectra of 

mineral pigment mixtures were not simple linear mixing results 

of the endmember pigments (Wang et al., 2005). Besides, the 

spectral mixing model of minerals varies at different 

wavelengths. Through selecting the bands suitable for linear 

mixing modeling, which can be called strong linear bands, and 

performing linear spectral unmixing on these bands instead of 

the whole dataset, an extra higher precision for quantitative 

analysis can be achieved. The derivative of ratio spectroscopy 

(DRS) is a potential method for the selection of strong linear 

bands(Zhao et al., 2013b). Previous research indicated that 

DRS can eliminate the effects of background material in the 

mixture, and extract the pure spectral information of the target 

material(Zhao et al., 2013a). Based on the intensity of 

derivative of ratio spectra at a single wavelength, the content of 

the target material can be estimated, and the spectral mixing 

model of different bands can be compared. 

Vermillion and stone-yellow are two typical Chinese ancient 

paintings of mineral pigments, which are often used to mix 

colors in actual paintings (He, 2008). The two kinds of mineral 

pigment are selected in this paper as example, make the same 

particle size of powder has a precise quantitative mixing ratio, 

strictly control the experimental conditions for getting their 

mixed spectrum, using fully constrained least squares method 

based on mixed linear model and derivative of ratio unmixing 

algorithm to inverting abundances of end elements of mixture 

pigment, then to evaluate the accuracy and according to the 

unmixing accuracy of both methods, to carry on the 

comprehensive analysis to the two mineral pigment spectral 

mixture model. 
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2. METHODOLOGY 

2.1. Linear Spectal Mixing Model 

In the linear mixture model, the reflectance of a pixel in each 

spectral band is expressed as a linear combination of the 

characteristic reflectances of its component endmembers 

weighted by their respective areal proportions within the pixel. 

Thus, the reflectance ( )
i

r   of a pixel in the i th band is 

given by 
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with 1,2,...,i n  and 1,2,...,j m  where, 
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j i
r  denotes the reflectance of the j th component of the 

pixel in the i th  spectral band; j
F

 
is the proportion of the 

j th component in the pixel; ( )
i

  is the error term in the 

i th  spectral band; m represents the number of spectral bands 

while n stands for the number of components in the pixel. 

Supposing all the endmembers are included, the following 

normalization constraint will be satisfied 

            1

1
m

j
j

F


                  (2) 

Moreover, j
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should meet the non-negative conditions 
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Given the endmember spectral and the mixed spectral, we can 

solve the composition of endmembers.  

 

2.2. Derivative of Ratio Spectroscopy (DRS) 

When a pixel contains only two endmembers M and N, the 

Linear Spectral Mixing Model can be simplified as 

     (4)
                   

 

If equation (4) is divided by the corresponding equation for the 

spectrum of N, the following equation can be written: 
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At a given wavelength , the fraction of M can be calculated by  
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N can be determined by an analogous procedure (wavelength 

not necessarily the same) 
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For a specific component in the mixture, the abundance RMSE 

was used for estimation as follows: 

                       (10)

                 

where  is the real abundance of each mixture, is the 

inversed abundance of each mixture, and  is the number of 

mixtures.  

      (5)

   

 

To obtain the spectral ratio , the reflectance ratio at 

each wavelength is calculated. For determining M in the 

presence of N, use the first derivative of equation (5) 

    

(6)

                

 

Equation (6) indicates that the “derivative ratio spectrum” of 

the mixture is dependent only on the values of . If 

equation (6) is divided by  

3. EXPERIMENTS 

3.1. Acquisition of experimental data 

The main mineral composition of vermillion is sulfide mercury, 

while the main mineral composition of stone-yellow is arsenic 

trisulfide. This experiment chooses the same size of vermillion, 

stone-yellow pigment powder, firstly measured the density of 

vermillion and stone-yellow powder, then mixing the two 

pigment according to seven different ratio of volume(as shown 

in Table 1). The total volume of pigment is fixed in each group, 

according to the volume ratio to calculate two kinds of pigment 

respective volume, according to the density of two kinds of 

pigment to calculate their own quality, then use micrometer 

precision electronic balance weigh the pigment powder up. 

Each group of pigments that had been homogeneous mixing 

become seven pigment samples, two of which were pure 

pigment samples and five mixed pigment samples. Seven 

samples of paint spread on the black paper, keep the black 

paper smooth, then measured the spectrum of the seven 

samples of pigments by the SVC HR-1024 portable 

spectrometer (point spectrometer, FWHM: ≦ 2.8nm, 

250-1000nm; ≦ 8.0nm, 1000-1900nm; ≦ 6.0nm, 
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1900-2500nm), in order to the data quality, the pigment 

samples are measured twice at least. 

 
Sample No. Vermilion (V) Stone-yellow (S) 

1 0% 100% 

2 10% 90% 

3 30% 70% 

4 50% 50% 

5 70% 30% 

6 90% 10% 

7 100% 0% 

Table 1 Mixing formula of mineral pigment samples 

 

Deal the original spectral data with overlapping area removal, 

spectral resampling (make the interval of center wavelength 

become 1 nm by resampling form the 350-2500 nm band), 

averaging, and some other pretreatment process, using Matlab 

to drawing images of wavelength and reflectivity, get 7 of 

reflectance spectra as shown in figure 1, including 2 end 

elements spectrum and 5 mixed spectrum. 

 

 
Fig.1 The reflectance spectra of vermilion and stone 

yellow samples 

 

 

3.2. Experimental results 

3.2.1 Full-band Spectral Mixing Analysis 

 

Based on the endmember spectra, unmixing of the full-band 

mixing spectra can be shown by fully constrained least squares 

method (FCLS), and the abundance of vermillion and 

stone-yellow in the mixtures can be achieved respectively. The 

root mean square error (RMSE) between the inverted 

abundances and actual abundance can be calculated, and the 

results have been shown in Table 2. 

From the above results, there is great differences between 

abundances of end elements of vermillion and stone-yellow by 

the full wave spectrum unmixing inversion and abundance of 

actual, root mean square error is 0.2828, unmixing accuracy is 

low, it shows that the vermillion, stone-yellow mixture mineral 

pigments do not conform to the linear mixed model in general, 

nonlinear mixed features performed stronger. This is consistent 

with the previous analysis of the mineral mixed spectral model 

(Heylen and Gader, 2014; Singer, 1981). 

 

3.1.2 Derivative of Ratio Spectroscopy Analysis 

 

By using the ratio derivative unmixing algorithm, the 

respective abundance values of vermilion and stone-yellow can 

be calculated in each band. Taking Sample No. 4 as an example, 

histogram statistics of vermilion abundance inversion results 

are shown in Fig.2. It can be seen that the abundances of 

vermilion obtained from different bands are quite different. The 

most concentrated solution of the unmixing result lies in the 

vicinity of 85%, much higher than the true value of 50%. Same 

as sample No.4, the histograms of the other samples also 

display apprent deviation between the estimated abundance and 

the true abundance. This result confirm a conclusion reached in 

the previous section that the blend of two mineral pigments, 

vermilion and stone-yellow, does not conform to the linear 

spectral mixture model as a whole. 

 

 
Fig.2 Histogram of vermilion abundance estimation 

based on derivative of ratio method (Sample No.4) 

 

Calculate the root mean square error (RMSE) of the 

endmembers’ abundance and the actual abundance of each band 

inversion, and sort them by the order from low to high to get 

the 20 band with the highest unmixing accuracy, which is the 

strong linear band (Table 3). It can be seen that the root mean 

square error of the strong linear band is less than 0.10, and the 

error of many bands is within 0.05. The accuracy is much 

higher than that result of the full band spectral unmixing. 

 

 

Endmember Abundance 
V10% + 

S90% 

V30%+ 

S70% 

V50%+ 

S50% 

V70%+ 

S30% 

V90%+ 

S10% 
RMSE 

Vermilion (V) 
Estimated 0.3852  0.6777  0.8373  0.9282  1.0000  

0.2828 

Actual 0.1000  0.3000  0.5000  0.7000  0.9000  

Stone-yellow(S) 
Estimated 0.6148  0.3223  0.1627  0.0718  0.0000  

Actual 0.9000  0.7000  0.5000  0.3000  0.1000  

Difference 0.2852  0.3777  0.3373  0.2282  0.1000   

Table2 Abundance inversion results based on FCLS 

 

 

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Wavelength (μm)

R
e
fl
e
c
ta

n
c
e

 

 

Vermilion(V)

V10%+S90%

V30%+S70%

V50%+S50%

V70%+S30%

V90%+S10%

Stone-yellow(S)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

50

Value

C
o
u
n
t

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-2359-2018 | © Authors 2018. CC BY 4.0 License.

 
2361



Vermilion 

λ/nm 1104 1100 1096 1093 1089 365 1931 1108 1085 471 

RMSE 0.0452 0.0453 0.0530 0.0581 0.0631 0.0632 0.0674 0.0711 0.0719 0.0865 

λ/nm 469 472 1081 468 474 1077 696 467 697 2414 

RMSE 0.0887 0.0893 0.0896 0.0920 0.0959 0.0964 0.0966 0.0971 0.0971 0.0999 

Stone-yellow 

λ/nm 459 458 461 457 462 1108 452 455 464 454 

RMSE 0.0221 0.0244 0.0255 0.0316 0.0369 0.0385 0.0411 0.0413 0.0432 0.0440 

λ/nm 465 467 1112 1104 468 451 469 1931 1100 471 

RMSE 0.0495 0.0561 0.0574 0.0629 0.0644 0.0657 0.0735 0.0782 0.0828 0.0856 

Table3 Strong linear bands derived from mixture of vermilion and stone-yellow 

 

 

 
(a) 

 
(b) 

Fig.3 Strong linear bands on reflectance spectral 

(a)：strong linear bands of vermilion；(b)：strong linear 

bands of stone yellow 

 

In order to analyze the distribution characteristics of strong 

linear bands more intuitively, the strong linear bands of 

vermilion and stone-yellow are respectively marked on the 

reflectance spectrum, as shown in Fig.3. It can be seen that the 

strong linear band of the two mineral pigments has a generally 

equal range of band distribution, which varies locally. This 

shows that the strong linear band of vermilion and stone-yellow 

mixed pigments is determined by the spectral characteristics of 

the two components, but is more affected by the spectral 

characteristics of the target components locally. This is 

consistent with the previous study on mineral powder mixtures 

(Zhao et al., 2013a). 

 

4. CONCLUSIONS 

In this paper, the mixing spectra of vermilion and stone-yellow 

powders were analyzed by full-band spectral unmixing and 

single-band spectral unmixing respectively. The spectral 

mixture model of Chinese ancient mineral pigments was 

preliminarily analyzed. The following conclusions were drawn: 

 

(1) The analysis results of full-band spectral mixture model 

show that the mixtures of vermilion and stone-yellow mineral 

pigments generally do not fit the linear spectral mixture model 

and show strong nonlinearity. 

 

(2) The analysis results of single-band spectral mixture model 

show that the mixtures of vermilion and stone-yellow mineral 

pigments generally fit the linear spectral mixture model in 

some bands, show strong linear mixture characteristics. 

 

(3) The range of strong linear band distribution of the two 

mineral pigments of vermilion and stone-yellow is generally 

more consistent and different locally. This indicates that the 

strong linear band is determined by the spectral characteristics 

of the two mixed components, but is more affected by the 

spectral characteristics of the target component in the local. 

 

Due to the limited combination of mineral pigments used, 

further research is required on the combination of different 

types and different proportions of pigments in ancient Chinese 

paintings to enhance the applicability of the conclusions. In 

addition, the next step is to study the non-linear spectral 

mixture model of mineral pigments and it’s spectral unmixing 

algorithm. With the continuous research, the application of 

hyperspectral technology in the protection and restoration of 

ancient Chinese paintings is expected to be further developing. 
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