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ABSTRACT: 

 

This paper proposes a novel method for point cloud classification using vertical structural characteristics of ground objects. Since 

urbanization develops rapidly nowadays, urban ground objects also change frequently. Conventional photogrammetric methods cannot 

satisfy the requirements of updating the ground objects’ information efficiently, so LiDAR (Light Detection and Ranging) technology 

is employed to accomplish this task. LiDAR data, namely point cloud data, can obtain detailed three-dimensional coordinates of ground 

objects, but this kind of data is discrete and unorganized. To accomplish ground objects classification with point cloud, we first construct 

horizontal grids and vertical layers to organize point cloud data, and then calculate vertical characteristics, including density and 

measures of dispersion, and form characteristic curves for each grids. With the help of PCA processing and K-means algorithm, we 

analyze the similarities and differences of characteristic curves. Curves that have similar features will be classified into the same class 

and point cloud correspond to these curves will be classified as well. The whole process is simple but effective, and this approach does 

not need assistance of other data sources. In this study, point cloud data are classified into three classes, which are vegetation, buildings, 

and roads. When horizontal grid spacing and vertical layer spacing are 3m and 1m respectively, vertical characteristic is set as density, 

and the number of dimensions after PCA processing is 11, the overall precision of classification result is about 86.31%. The result can 

help us quickly understand the distribution of various ground objects. 

 

 

1. INTRODUCTION 

 

Ground objects, including buildings, vegetation, roads, are 

important components of urban facilities. Conventional 

photogrammetric methods can help conduct surveys on ground 

objects distribution and change. But these methods need a long 

production cycle and cannot meet the demands of rapid urban 

development. LiDAR is an active remote sensing technology and 

is able to get intensive point cloud to present precise 3D 

information of ground surface (Macfaden et al., 2012; 

Rottensteiner et al., 2005; Kim et al., 2011). LiDAR now has 

been applied to identify and classify ground objects, and this 

technology can improve identification efficiency and 

classification accuracy.  

 

Many researches (Bork et al., 2007; Antonarakis et al., 2008; 

Dalponte et al., 2008) about point cloud classification have been 

conducted, and some of them combined point cloud data with 

other data sources, such as high spatial resolution images, to get 

more accurate results. In order to obtain higher classification 

accuracy, various researches have conducted. For instance, 

Zhang et al. (2016) split point cloud into hierarchical clusters and 

extracted the shape features of the multilevel point clusters, and 

then the precision of the classification was improved by utilizing 

the robust and discriminative shape features. Lin et al. (2014) 

introduced a method that could analyze local geometric 

characteristics of a point cloud by using a weighted covariance 

matrix. In this way, eigen-features that more reliable were 

obtained and the classification accuracy was improved. Zhu et al. 

(2017) utilized multi-level semantic relationships, such as point-

homogeneity and supervoxel-adjacency, to classify point cloud. 

Weinmann et al. (2015) presented a four-component framework 

to select better-performed neighborhood and features, and thus 

improved classification results. In addition, point cloud 

classification has been applied to many fields. Acharjee et al. 

(2015) proposed a novel filter algorithm based on point cloud 

classification. Ground objects classification with point cloud can 

also be applied to urban planning and urban construction (Guo 

et al., 2014; Niemeyer et al., 2012; Ramiya et al., 2015). 

 

Different ground objects’ point cloud data have different vertical 

structural features. For example, point cloud distributions of 

trees diverge from the bottom to the top because structures of 

trunk and crown are different. And since laser cannot penetrate 

the top of buildings, we can only acquire point cloud data of 

buildings’ roofs, so there are few points at the bottom of 

buildings. Point cloud data of buildings and trees can be 

separated according to the distribution of points in vertical 

direction. In this paper, vertical structural characteristics of 

different ground objects’ airborne point cloud data are analyzed 

and the characteristics are regarded as the basis of classifying 

urban point cloud. 

 

 

2. METHODS 

 

Figure 1 shows the whole process of urban point cloud 

classification.
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Figure 1. Flow chart of urban point cloud classification 

 

2.1 Study area and urban airborne LiDAR point cloud data 

acquisition  

 

Airborne LiDAR system integrates GPS (Global Positioning 

System), IMU (Inertial Measurement Unit) and a laser scanner, 

which are mounted on aircrafts or Unmanned Aerial Vehicles 

(UAV). Three-dimensional coordinates and intensity 

information of ground objects can be obtained by using airborne 

LiDAR system and point cloud data thus are generated.  

 

Study area in this study need to contain dominant ground objects, 

including roads, buildings and vegetation, so we found an area 

in Wuhan where could satisfy the requirement. Airborne LiDAR 

point cloud data were acquired in summer. Trees had abundant 

foliage and ground objects in the area had prominent vertical 

features at that time. The number of points in acquired airborne 

LiDAR data was about 540,000 and the largest elevation 

difference in the area was nearly 34m. Although shapes of 

buildings in study area were relatively regular, vegetation, 

mainly trees, were close to buildings and there were some 

buildings with low heights, which brought great difficulties for 

point cloud classification. Figure 2 is the overhead view of the 

study area presented by an aerial image and point cloud data. 

 

It is inevitable to be affected by some disturbances when 

acquiring point cloud data, so raw point cloud data will have 

some random errors and system errors. In order to rebuild the 

ground surface with point cloud data, raw data needs to be 

calibrated and preprocessed to eliminate the errors and then can 

be utilized for point cloud classification. 

   
(a) Aerial image                                   (b) Point cloud data 

Figure 2. Overhead view of study area 

 

2.2 Horizontal grids construction and vertical layers 

segmentation 

 

Airborne LiDAR data have high density and dispersion, and the 

data are unorganized. In order to organize and manage the points, 

virtual square grids are constructed. Each point in raw point 

cloud data has three-dimensional coordinates (Xi, Yi, Zi). Firstly, 

maximum and minimum values of X coordinate and Y coordinate, 

namely Xmax, Xmin, Ymax and Ymin, are found to determine the 

horizontal distribution extent of point cloud data. Secondly, 

appropriate grid spacing (l) is set according to sizes of ground 

objects. Then the number of grids (M × N) can be calculated 
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based on formula (1) and (2). Above grids are numbered from 1 

to M × N, and each point can find its corresponding grid (NUMi) 

according to its coordinates (Xi, Yi). NUMi can be identified 

based on formula (3) to (5). In formula (3) and (4), Hi is the 

identification number of the point in X direction and Wi is the 

identification number of the point in Y direction. In this case, 

each point will be put in corresponding grid and the relation 

between the point coordinates and the grid number can be built. 
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For each grid, it is segmented into several layers with a proper 

spacing (S), and points in the grid will be distributed to different 

layers according to their elevations. If the elevation of a point is 

Zi, its corresponding layer number (Vi) can be identified by 

formula (6). Figure 3 shows the process of constructing 

horizontal grids and segmenting vertical layers. In subsequent 

processes, point cloud data in any grid and any layer can be 

chosen based on NUMi and Vi. 

 
Figure 3. Horizontal grid construction and vertical segmentation 

 

2.3 Vertical structural characteristic curves formation 

 

Airborne LiDAR data are of high density, which can help obtain 

detailed distribution structures of ground objects in both vertical 

direction and horizontal direction. Before classifying point cloud, 

features of different types of ground objects need to be extracted 

from massive point cloud data to parameterize the vertical 

characteristics of ground objects. For point cloud data in each 

grid, the type and the way of expression of their vertical 

characteristics are explored, and vertical characteristic values are 

calculated for each grid. Characteristic curves of different types 

of vertical characteristics are formed and the effectiveness of 

these curves to point cloud classification are evaluated. 

 

Vertical characteristics of point cloud data used in this research 

include point density (D) and measures of dispersion (MD), and 

these characteristics are calculated for every grid. Point density 

is the number of points in the layer, and for each horizontal grid, 

the number of points in each layer can represent the 

characteristic of point distribution in vertical direction. MD can 

be quantified in many forms, such as Variance (V), Standard 

Deviation (SD) and Coefficient of Variation (CV). Dispersions in 

X, Y, Z dimensions need to be considered when measuring the 

dispersion of a point cloud dataset (A = {ai∈Rd | ai = (Xi, Yi, Zi), 

i = 1,2,…,n}).In this study, we choose CV as one of the vertical 

characteristics. CV can be classified as coefficient of range, 

coefficient of standard deviation and coefficient of average 

difference on the basis of different dispersions, and the most 

frequently used CV is the coefficient of standard deviation. CV 

in X, Y, Z directions are CVX, CVY, and CVZ respectively. CVX 

can be calculated according to formula (7) to (10), whereX is 

the average of Xi (i = 1,2,…,n), VX and SDX are the variance and 

the standard deviation respectively. CVY and CVZ can be 

calculated in the same way as CVX. 
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For each grid, when characteristic value of each layer has been 

calculated, the characteristic curve of the grid can be formed. 

Sequence numbers, namely j (j = 1, 2…, n), of layers are taken 

as abscissas and characteristic values of layers are taken as 

ordinates, and we can get n discrete points. A characteristic curve 

will be plotted by connecting these discrete points. Different 

vertical characteristics can generate different characteristic 

curves. In order to illustrate the process of plotting characteristic 

curves, representative grids of three dominant kinds of ground 

objects (Figure 4) are selected to plot their density curves. Point 

cloud data are segmented into 16 layers, and points distribute 

differently in these layers. Density curve plots (Figure 5) of the 

three kind of ground objects indicate that vertical characteristics 

of different ground objects vary. Point cloud classification can 

be achieved by utilizing the diversities of point clouds’ vertical 

characteristics. 
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Figure 4. Side view of point cloud of trees, buildings and roads (from left to right) 

 

 
(a) Building      (b) Tree      (c) Road 

Figure 5. Density curves of representative grids of buildings, trees, and roads 

 

2.4 Point cloud classification based on vertical characteristic 

curves 

 

2.4.1 Non-linear vertical structural characteristic curves 

discretization: Vertical characteristic curves generated based on 

density and measures of dispersion are non-linear and cannot be 

fitted by equations. Therefore, we extract points on a curve with 

a certain sampling interval to simplify the curve. These extracted 

points are regard as an approximate expression of the curve. If 

the X coordinate of the curve ranges from xmin to xmax and the 

sampling interval is d, the number of sampling points (n) can be 

calculated according to formula (11). Then the curve can be 

expressed by a discrete points set P = {pi∈R | pi = (xi, yi), i = 

1,2,…,n}(Figure 6). Feature points on the curve, such as turning 

points and points with maximum and minimum characteristic 

values, need to be preserved, so proper sampling interval should 

be set. 

 

d

xx
INTn minmax     (11) 

 

 
Figure 6. Discretization of a characteristic curve 

 

When a characteristic curve of a grid is discretized, it can be 

expressed as a two-dimensional vector Pi 
T= {(x1, y1i), (x2, y2i), …, 

(xn, yni)}. Assuming that the number of grids is m, discretized 

characteristic curves of all grids will form a n×m matrix (Figure 

7). These vectors will create an n-dimensional space. In this 

space, the characteristic values in each dimension of the i-th grid 

are y1i, y2i, …, yni respectively. Imagining that the characteristic 

curve of the i-th grid is a point in n-dimensional space and its 

coordinates will be (y1i, y2i, …, yni). Now if we want to classify 

the characteristic curves we just need to classify characteristic 

points in n-dimensional space. 

 
Figure 7. The matrix of discretized curves 

 

2.4.2 PCA processing and unsupervised classification: PCA 

can reduce the dimension of data and emphasize the differences 

between data sets. When the n×m matrix of vertical structural 

characteristic curves is created, PCA is employed to reduce the 

dimension of the matrix. This process can eliminate similar 

features and reserve significant features of the matrix, namely 

eliminate unhelpful dimensions in the matrix, and the number of 

the matrix’s dimensions will decrease from n to k. Then column 

vectors in processed matrix are classified into three categories 

by using K-means algorithm, which is an unsupervised 

classification algorithm with high efficiency. Once vectors 

classification is completed, their corresponding curves, grids and 

points in these grids will be classified as well. 

 

 

3. RESULTS 

 

Classification method proposed in this paper has several 

processing phases. Several parameters, including spacings of 

horizontal grids and vertical layers, vertical structural 

characteristics, and the number of dimensions after PCA 

processing, need to be set manually in these phases. Variable-

controlling method can be employed to explore the effects of 

setting different parameters. In addition, three precision 

indicators, MR (Misclassification Rate), OR (Omission Rate) 

and CR (Correct classification Rate) are used to evaluate the 

result of classification, and they represent the ratio of 

misclassified points, omitted points and correct classified points 

to the total points of the certain category respectively. 

 

We firstly combined different horizontal grid spacings and 

vertical layer spacings to explore the influences of these two 
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parameters. There are four combinations of horizontal grid 

spacings and vertical layer spacings, which are 20m and 3m, 

10m and 2m, 5m and 1m, 1m and 1m. And vertical structural 

characteristic and the number of dimensions after PCA 

processing are set as density and 11 for the four combinations. 

Figure 7 and Table 1 present classification results and 

classification precision of point cloud data with these four 

parameter combinations. Among the four parameter 

combinations, when horizontal grid spacing and vertical layer 

spacing are set as 5m and 1m respectively, the overall 

classification precision is higher than that of other three 

combinations.  

  
 

  
 

 

Figure 7. Classification results of different combinations of horizontal grid spacing and vertical layer spacing 

 

Precision 

GS, LS 
Vegetation (%) Ground (%) Buildings (%) Overall (%) 

20 , 3 

CR 53.42 CR 70.15 CR 66.66 

63.41 MR 22.07 MR 36.67 MR 21.05 

LR 46.58 LR 29.85 LR 33.34 

10 , 2 

CR 63.73 CR 82.63 CR 70.69 

72.35 MR 20.54 MR 21.44 MR 17.99 

LR 36.27 LR 17.37 LR 29.31 

5 , 1 

CR 82.95 CR 88.80 CR 84.20 

85.32 MR 14.67 MR 12.63 MR 8.62 

LR 17.05 LR 11.20 LR 15.80 

1 , 1 

CR 76.41 CR 83.22 CR 75.02 

78.22 MR 18.01 MR 20.67 MR 22.24 

LR 23.59 LR 16.78 LR 24.98 

GS: horizontal grid spacing, LS: vertical layer spacing 

Table 1. Classification Precision of different combinations of horizontal grid spacing and vertical layer spacing 

 

Then two vertical characteristics, density and measures of 

dispersion, are applied to conduct point cloud classification, and 

horizontal grid spacing, vertical layer spacing and the number of 

dimensions after PCA processing are set as 2m, 1m and 11. The 

classification results and precision are evaluated as well (Figure 

8, Table 2). When other parameters are the same, using density 

as the vertical characteristic can get higher classification 

precision. Density has better performance not only on the overall 

classification result but also on the three specific kinds of ground 

objects. 

 

(20, 3) (10, 2) 

(5, 1) (1, 1) 

 Ground     Building        Vegetation 
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Figure 8. Classification results with different vertical characteristics 

 

Precision 

Characteristic 
Vegetation (%) Ground (%) Buildings (%) Overall (%) 

Density 

CR 84.08 CR 89.38 CR 85.47 

86.31 MR 13.10 MR 13.10 MR 7.84 

LR 15.92 LR 10.62 LR 14.53 

Measures of dispersion 

CR 76.28 CR 76.48 CR 57.06 

69.94 MR 25.01 MR 33.98 MR 23.66 

LR 23.72 LR 23.52 LR 42.94 

Table 2. Classification precision of using different vertical characteristics 

 

The number of dimensions (N) after PCA processing can impose 

an impact on the expression of characteristic curves. When 

horizontal grid spacing and vertical layer spacing are 3m and 1m, 

and the vertical characteristic is chosen as density, we compared 

classification results when N is set as 11 and 5 (Figure 9, Table 

3). The overall precision is 86.31% when N is 11, which is much 

higher than that when N is 5. When N is set as 5, some points of 

buildings are classified into vegetation while some points of 

vegetation are classified into buildings, the classification result 

is not satisfying. 

 

   
 

 

Figure 9. Classification results of setting different number of dimensions after PCA processing 

 

Precision 

N 
Vegetation (%) Ground (%) Buildings (%) Overall (%) 

11 

CR 84.08 CR 89.38 CR 85.47 

86.31 MR 13.10 MR 13.10 MR 7.84 

LR 15.92 LR 10.62 LR 14.53 

5 

CR 75.36 CR 77.27 CR 65.13 

72.59 MR 24.11 MR 35.56 MR 20.52 

LR 24.64 LR 27.73 LR 34.87 

Table 3. Classification precision of setting different number of dimensions after PCA processing 

 

In order to get the optimum classification result, various 

combinations of parameters are tested. When parameters are set 

as follows: point density as the vertical characteristic, grid 

spacing and vertical layer spacing are 3m and 1m respectively 

and the number of dimensions after PCA processing is 11, this 

combination of parameters perform the best. And with this 

combination of parameters, CR of buildings is 84.08%, CR of 

ground is about 89.38% and CR of vegetation is about 85.47%, 

which are considerably high in our research. 

Density Measures of dispersion 

 Ground     Building        Vegetation 

N = 11 N = 5 

 Ground     Building        Vegetation 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-2427-2018 | © Authors 2018. CC BY 4.0 License.

 
2432



 
 

Figure 10. Classification result generated by the best combination of parameters 

 

 

4. DISCUSSION 

 

Parameter setting is an important step in this point cloud 

classification method. Different combinations of parameters 

may lead to different classification results. In order to get better 

classification results, we need to optimize parameters choosing.  

 

Appropriate horizontal grid spacing and vertical layer spacing 

are difficult to find. If the spacing of horizontal grid is 

excessively large, such as 20m, a horizontal grid may contain 

more than one ground object, and the classification result is 

coarse. While if the grid spacing is overly small, such as 1m, 

ground objects in grids may be not intact and their vertical 

characteristics cannot be presented well. The vertical layer 

spacing also has the same problem as the horizontal grid spacing. 

Vertical characteristics cannot be depicted completely and 

effectively if layer spacing is large, because some features will 

be neglected if there are many points in a layer and the 

characteristic of these points is presented with only a value. In 

this study, final grid spacing and layer spacing are set as 3m and 

1m respectively. This combination of the horizontal grid spacing 

and the vertical layer spacing may be not the optimum one and 

some points are not classified into the correct class with this 

combination, but the generated grids and layers can help depict 

vertical characteristics appropriately.  

 

Concerning vertical characteristic, measures of dispersion 

apparently cannot reflect the characteristic of point distribution, 

and the classification result when measures of dispersion is 

regarded as vertical characteristic is not fulfilling. On the 

contrary, the classification result significantly improve when 

density is set as vertical characteristic.  

 

PCA processing can help reduce the dimension of discretized 

curves and emphasize prominent features of these curves. 

However, the number of dimensions after PCA processing need 

to be controlled. If N is excessively small, some features that are 

effective to classification may be removed by mistake and 

thereby result in lower classification precision. As the results 

mentioned earlier, classification precision is higher when N is 11 

than that when N is 5, which can support the analysis. 

 

The point cloud classification approach used in this research 

utilize the vertical characteristics of point cloud and point cloud 

are classified into three main classes without the assistance of 

other data sources. This method is applicable to ground objects 

classification in large study area and can improve the 

classification efficiency. The classification result can provide a 

general distribution of ground objects in study area. Nevertheless, 

the classification result is not precise enough, because the 

classification is based on regular grids while most ground objects 

are irregular. In further study, we consider to improve the 

precision of ground objects segmentation and classify ground 

objects into more detailed classes, not merely three dominant 

classes, to obtain more accurate classification results. 

 

 

5. CONCLUSION 

 

In this paper, vertical structural characteristic curves, which are 

formed based on various vertical structural characteristics, are 

utilized to classify urban point cloud data. This method does not 

have to filter ground points and does not need the help of other 

data sources either, making the processing simpler. Moreover, 

validation of this method is proved by comparing the 

classification results with the classification reference. However, 

point cloud data are classified into only three categories, and 

ground objects in the same category may have minor differences. 

For example, a city has broadleaved trees and conifer trees and 

they are both classified into vegetation category. And the 

categories of ground objects in study area are limited, which 

cannot prove the universality of this algorithm. So the 

classification algorithm needs to be improved to get more precise 

results, and the study area should be expanded to evaluate the 

effectiveness of this algorithm. 
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