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ABSTRACT:

Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series
Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved
unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different
temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new
solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the “purified” pixels in order
to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember
initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated
endmember is the mean value of “purified” pixels, which is the residual of the mixed pixel after excluding the contribution of all
nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization
framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed
“joint unmixing” approach provides more accurate endmember and abundance estimation results compared with “separate unmixing”
approach.

1. INTRODUCTION

Hyperspectral remote sensing technology consists of acquiring
a set of images capturing a spatial scene at a few hundreds of
contiguous spectral bands. However, the significant spectral in-
formation they convey is somewhat compromised by their lower
spatial resolution. This limitation, combined with the complex-
ity of the ground targets and environmental conditions, lead to
the observed pixel spectra composed of several pure materials–
referred to as endmembers. Spectral unmixing aims at identifying
a number of endmembers and their abundance fractions in each
pixel.

So far, spectral mixture analysis has been widely used to char-
acterize the spectral signatures of land cover types at a single
time point. The limited spectral information possessed by each
time frame of the image is not adequate to accurately estimate
endmembers. Consequently, spectral unmixing still presents a
challenge, as different ground components may demonstrate sim-
ilar spectral signatures in a remote sensing image due to the low
spectral resolution of multispectral imagery. Therefore, multi-
temporal analysis of remote sensing images has drawn increasing
interest in recent years, mainly for change detection, feature se-
lection and classification. For instance, Du et al. (Du et al., 2005)
described a change detection approach based on a linear mix-
ing model for multi-temporal CASI (Compact Airborne Spectro-
graphic Imager) images over crop fields. To date, temporal un-
mixing analysis has been mostly conducted using the time series
of MODIS or Hyperspectral images (Diao and Wang, 2016). Giv-
en above consideration, spectral unmixing a sequence of Landsat
8 images captured over the same area can be a significant interest.
∗Corresponding author

Several attributes of Landsat 8 are wide scope of coverage, higher
spatio-temporal resolution and cost-free status. More important-
ly, these data are well available at regular time intervals. But the
unmixing analysis of a time series of Landsat imagery has rarely
been studied.

Dedicated methods in the field of multitemporal spectral unmix-
ing have only begun to emerge (Iordache et al., 2017). Somers et
al. (Liu et al., 2012) proposed a method to minimize the effect of
endmember variability in the image by grouping multiple spectral
signatures (or bundles) to describe a particular endmember class
in the scene. Although all these methods have their own respec-
tive advantages, the acquisition of the temporal signatures of all
the endmembers in the images is still a challenge.

Spectral unmixing would be more straightforward if we have
“pure” pixels. Therefore, we intend to obtain the “purified” pix-
els from the mixed pixels in order to achieve a favorable unmix-
ing performance. The definition of a “purified” pixel is that the
residual of the mixed pixel after excluding the contribution of
all nondominant endmembers. Accounting for the temporal in-
formation, we will refer to as time series K-P-Means algorithm,
which alternates iteratively between two main steps (abundance
estimation and endmember update) until convergence to yield fi-
nal endmember estimates (Xu et al., 2014). Endmember update
refers to utilize the endmembers that have already been updated
in the current iteration. The superiority of the analysis of time
series of unmixing with the K-P-Means algorithm is evaluated by
experiments on both simulated and real multispectral images.

The paper is organized as follows. The proposed time series K-P-
Means model accounting for temporal information is introduced
in Section 2. Experimental results obtained on synthetic and real

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-2609-2018 | © Authors 2018. CC BY 4.0 License.

 
2609



data are reported in Section 3. Section 4 finally concludes this
work.

2. PROPOSED APPROACH

2.1 Problem Formulation

A linear mixing model (LMM) is adopted in this letter since it
is appropriate to describe remote sensing data when the declivity
of the scene and microscopic interactions between the observed
materials are negligible (Bioucas-Dias et al., 2012). The LMM
consists of representing each image pixel by a linear combination
of the endmember matrix and abundance matrix with the Gaus-
sian noise. The model can thus be written as

xi =

K∑
k=1

aksik + n (1)

where xi is a P × 1 dimensional image pixel, sik is a 1 × 1
nonnegative abundance vector, and ak denotes a P × 1 matrix.
Finally, n represents an additive noise. In order to achieve an
efficient endmember estimation, it is reasonable to take advantage
of the “purified” pixels that are only due to dominant endmember.
We refer to xi after removing the contribution of nondominant
endmembers as “purified” pixels.

It is desirable to utilize the good abundance information to obtain
“purified” pixels for elegant endmember extraction. On the other
hand, the accurate endmember estimation also can enhance the
accuracy of abundance estimation. Therefore, spectral unmixing
is interpreted as an optimization issue, which is solved by itera-
tively alternating the estimation between the endmember update
and abundance estimation. The following section describes the
time series K-P-Means model.

2.2 time series K-P-Means model

In this section, we consider Landsat 8 images acquired at T d-
ifferent time frames over the same scene, assuming that K end-
members are present in the resulting time series. Given an a pri-
ori known number of endmembers K, the time series K-P-Means
model is based on K-P-Means algorithm, which characterizes a
class by the dominant endmember, whose fractional abundance
is the biggest (Xu et al., 2014). At each time t, the model of time
series K-P-Means can be expressed as

xk
it =

K∑
r=1

artsir + n, sik > {sir 6=k} ≥ 0 (2)

where t = 1, 2, ..., T and i = 1, 2, ..., N , xk
it denotes the ith

image pixel at time t, art is the rth endmember at time t, sir
is the proportion of the rth endmember in the ith pixel. Finally,
n is independent and identically distributed Gaussian noise. The
proposed time series K-P-Means accounting for temporal infor-
mation is written as


xk
i1

xk
i2

.
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.

xk
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 =

K∑
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ar1
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arT

 sir +
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where r = 1, 2, ...,K, Xk
i = [(xk

i1)
T , (xk

i2)
T , ..., (xk

iT )
T ]T is a

(P×T )×1 matrix containing the ith pixel of the all time frames,
Ar = [(ar1)

T , (ar2)
T , ..., (arT )

T ]T denotes a (P × T ) × 1
matrix containing the rth endmember of the all time frames, sir
denotes a 1 × 1 abundance. The object function of time series
K-P-Means can be formulated as

{Ak, l} = min
l,A

K∑
k=1

∑
li=k

‖Yi −Ak‖2 (4)

where Yi is the “purified” pixel that is only due to the contribution
of dominant endmember, therefore Yi can be formulated as

Yi = Xi −
K∑

r 6=k

Arsir (5)

Following (4), where l are the labels of pixels, given {Ar}, pixel
labeling requires solving the following optimization issue:

l = argmin
k

∥∥∥∥∥∥Xi −
K∑

r 6=k

Arsir −Ak

∥∥∥∥∥∥
2

(6)

s.t. {sir} ≥ 0, sik > {sir 6=k}

The above equation means that Xi is associated with the kth end-
member Ak, which will take the largest coefficient sik when the
representation error is minimized (Xu et al., 2014).

2.3 Abundance estimation

According to the previously described model, one essential step is
to estimate {sir} given {Ar}, which is a nonnegative least square
(NNLS) issue, and is typically formulated as (Bro and De Jong,
2015) (Lawson and Hanson, 1995):

argmin
{sr}

∥∥∥∥∥Xi −
∑
r

Arsir

∥∥∥∥∥
2

, s.t.∀sir ≥ 0 (7)

Based on this above formulation, a popular approach for NNL-
S is an active-set method, which was proposed by Lawson and
Hanson in (Lawson and Hanson, 1995) and modified by Bro and
Jong for fast computation (Bro and De Jong, 2015).

2.4 Endmember estimation

Another step in K-P-Means algorithm is the estimation of {Ak}
given

{
Y k
i

}
, with the following equation:

Y k
i = Ak + n (8)

K-P-Means estimates {Ak} as the mean value of
{
Y k
i

}
. The

complete algorithm will be tested on the simulated and real mul-
tispectral images.
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2.5 Complete algorithm

Assembling two main steps (abundance estimation and endmem-
ber update) into the iterative optimization framework generates
the complete algorithm of time series K-P-Means. The entries of
input are the spectral stack X , number of clusters K and a prede-
fined maximum number of iteration. First, the vertex component
analysis (VCA) is used to extract endmembers for endmember
initialization. Then, nonnegative least square (NNLS) is used to
estimate abundance maps by using the endmember. Finally, the
estimated endmember is the mean value of purified pixels.

3. EXPERIMENTS

We evaluate the performance of time series K-P-Means using the
Xi and Ar , hereafter called “joint unmixing”. We compare it to
the results achieved by using xit and art, which is referred to as
“separate unmixing”. The results of the experiments are evaluat-
ed by spectral angle distance (SAD), spectral information diver-
gence(SID), abundance angle distance (AAD), abundance infor-
mation divergence (AID).

3.1 Experiment on simulated images

The proposed method has been applied to a synthetic time series
of ten images, composed of four endmembers of size 58×58 with
100 bands. First, we design an abundance map composed of four
real spectra, which are randomly selected from the USGS Digital
Spectral Library, sampled on 10 spectral reflectance bands. Then,
we set a spectral scale factor as one period of a sinusoid over the
ten time instants to simulate the time series of endmembers (Hen-
rot et al., 2016). The mixtures correspond to linear mixture of 4
endmembers. The resulting image has finally been corrupted by
adding Gaussian noise. In the simulated study, in order to in-
vestigate the algorithm robustness to noise corruption, they are
tested on simulated images with different noise levels measured
by the signal-to-noise ratio (SNR) (Miao and Qi, 2007). The per-
formances of these two methods are compared at different noise
levels in terms of AAD, AID, SAD and SID. In these four statis-
tics, smaller value means better result, as reported in Figure 1.

Overall, the “joint unmixing” approach achieves a better perfor-
mance than the “separate unmixing” approach across all noise
levels, indicating that spectral unmixing analysis on time series
Landsat 8 images can achieve a good estimation result and that K-
P-Means algorithm is capable of accurately estimating endmem-
bers in highly mixed and noisy circumstance. Note that here,
compared to the separate unmixing method, the endmember es-
timation of joint method measured by SAD and SID seem to be
robust with SNR decreasing from 45 to 20. As we can see, the
numerical variation of SAD and SID is very low. When SNR
=10, we noticed that “joint unmixing” achieves much lower SAD
and SID values than “separate unmixing”. In terms of abundance
estimation, the results display the similar pattern, joint method
produces better performance than separate method, although in
the high noise circumstance, there was a small discrepancy in
AAD and AID. In general, it can be seen from the Figure 1 that
the “separate umixing” performs worse than the “joint umixing”.

3.2 Test on the real images

The time series of Landsat 8 images, which were captured over
the scene of the Bohai Gulf, is used to test the proposed algo-
rithms. There are 11 images with minimal cloud cover were col-
lected by OLI and TIRS in 2014 and these are available in the

Geospatial Data Cloud website. The temporal analysis was done
using the images collected in March 5 and 21, April 6 and 22,
May 8, June 9, July 11 and 27, Aug. 12, Sep. 13 and Oct. 15 of
2014. Each image comprises 456× 453 spatial pixels belonging
to 4 different land cover types. Each image has spatial resolution
of 30 m and contains 7 wavelengths.

In this section, we compare the separate and joint unmixing ap-
proach on this data set. The spectral unmixing results of the “sep-
arate unmixing” and the “joint unmixing” on the different time
frames are displayed in the Figure 2 and Figure 3. As we can see,
the unmixing performances of these two methods seem to show a
similar pattern. Especially the “endmember 1” and “endmember
2” seem correctly extracted in both cases. But, combined with
the abundance maps, the joint method unmixes “endmember 3”
and “endmember 4” better than the separate method. Other time
frame results also demonstrate that joint method yields visually
better performance. Moreover, accounting for the temporal infor-
mation in the joint unmixing approach provides a good estimation
result, as shown in Figure 4.

In order to quantitatively evaluate the performance of the two
methods, we run the comparison for seven different time frames
and the value of SAD and SID of the estimated spectra reveal that
“joint unmixing” outperforms “separate unmixing”, as shown in
Table I.

SAD SID

Joint umixing 14.7588 0.0870
Separate unmixing 32.4903 0.4242

Time frame 1
Joint umixing 11.3520 0.0553

Separate unmixing 15.1049 0.0994

Time frame 3
Joint umixing 11.7239 0.0626

Separate unmixing 13.6522 0.0806

Time frame 5
Joint umixing 12.9423 0.0730

Separate unmixing 20.4470 0.1716

Time frame 7
Joint umixing 12.3008 0.0665

Separate unmixing 27.2941 0.4895

Time frame 9
Joint umixing 12.3239 0.0782

Separate unmixing 18.6306 0.1555

Time frame 11
Joint umixing 9.7722 0.0425

Separate unmixing 16.2673 0.1065

Table 1. When SNR=40, performance of the “joint unmixing”
approach and “separate unmixing” approach, measured by SAD
and SID, over different time frames. In these statistics, smaller

value means better result.

4. CONCLUSION

This paper has presented a solution to the problem of unmixing
a time series of Landsat 8 images based on the K-P-Means al-
gorithm. The time series K-P-Means algorithm was to jointly
process a time series of multispectral images for an optimal un-
mixing result. Indeed, sequential endmember estimation from
a set of Landsat images captured over the same area could pro-
vide improved performance when compared to independent im-
age analyses. Moreover, different land cover types may exhibit
different temporal patterns, which could aid the discrimination of
different natures. Therefore, temporal analysis could be of sig-
nificant interest. The purpose of time series K-P-Means algorith-
m was to obtain the “purified” pixels for enhanced endmember
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Figure 1. The comparison of “joint unmixing” and “separate unmixing” at different noise levels in terms of (a) SAD, (b) SID, (c)
AAD, and (d) AID. In these four statistics, smaller value means better result.
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Figure 2. Endmembers obtained by the “separate unmixing” method and “joint unmixing” method. Estimated spectra from the fifth,
seventh and tenth time frame. The “separate unmixing” results are displayed in (a), (b) and (c). The “joint unmixing” results are

displayed in (d), (e) and (f). Note that the green indicates the true endmembers, the black represents the estimated endmember. The
estimated endmembers are closer to the true endmembers. See e.g. the fifth, seventh and tenth time frames of endmember 3 and 4.
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Figure 3. Abundance maps obtained by the “separate unmixing” method and “joint umixing” method. The “separate unmixing”
results are displayed in the first row. The “joint unmixing” results are displayed in the second row. As we can see, the unmixing
performances of the two methods on “endmember 1” and “endmember 2” show similar patterns. However, combined with the

estimated spectra in the Figure 3, the joint method unmixes “endmember 3” and “endmember 4” better than the separate method.
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Figure 4. Endmembers obtained by the “separate unmixing” method and “joint unmixing” method. The “joint unmixing” approach
accounts for the temporal information. Note that the green indicates the true endmember, the black represents he estimated

endmember. The estimated spectra by joint unmixing are closer to the true endmembers, especially “endmember 4” extracted
correctly by the joint method. Other endmember estimation results also indicate that joint method yields better performance.
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estimation, which could, in turn, improve the accuracy of abun-
dance estimation. Consequently, time series K-P-Means algo-
rithm could be treated as an iterative optimization problem by
alternating the estimation between two main steps (endmember
estimation and abundance estimation). The performance of the
presented approach proved that “joint unmixing” approach out-
performed “separate unmixing” approach and that time series K-
P-Means was capable of accurately estimating both endmembers
and the corresponding abundance.
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