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ABSTRACT: 

Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as 

different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral 

similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced 

remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential 

opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be 

useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. 

The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact 

Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were 

include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) 

derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate 

the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to 

the delineated crown; 3) Spectral features within 3×3 neighborhood regions centered on the treetops detected by the treetop detection 

algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters 

and heights were established, and different crown-level tree species were classified using the combination of spectral and shape 

characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12%, Kc = 0.90) 

performed better than LiDAR-metrics method (OA = 79.86%, Kc = 0.81) and spectral-metircs method (OA = 71.26, Kc = 0.69) in 

terms of classification accuracy, which indicated that the advanced method of data processing and sensitive feature selection are 

critical for improving the accuracy of crown-level tree species classification. 

* Corresponding author: Jie Wu - 936992107@qq.com

1. INTRODUCTION

Globally, over 10 million km2 of agricultural land has a tree 

cover greater than 10% (Li et al., 2003). Agroforestry has been 

much advocated and practiced in China and around the world in 

the past five decades because agroforestry combining 

agricultural and forestry techniques is able to create more 

diverse, productive, profitable, healthy and sustainable land use 

systems (Zomer et al., 2009). The forests that grow in these 

areas have significantly positive effects on the fertility of the 

soil and the productivity of the agricultural land, mitigating the 

impacts of climate variability and change, conserving 

biodiversity and improving air and water quality (Hernandez et 

al., 2012). In addition, woody trees on agricultural land has the 

potential for carbon (C) sequestration while providing many 

economic, social, and ecological benefits. Therefore, mapping 

tree species is essential for sustainable planning as well as to 

improve our understanding of the role of different trees in the 

agroforestry ecosystem (George et al., 2014).  

Hyperspectral data is considered effective for mapping tree 

species as it can measure subtle variability in spectral 

reflectance from leaf to crown scales, largely due to their very 

high spectral resolution and wide range of electromagnetic 

spectrum (George et al., 2014). As a result, hyperspectral data 

have been widely applied in mapping tree species in different 

kinds of forest ecosystems. Species classification has been 

usually carried out at pixel and crown levels. Pixel-level 

classifications have also been employed for tree species 

classification due to its easiness for implementation and 

interpretation (Clark and Roberts, 2012). However, pixel-level 

classification ignores the negative impact of the mixed pixel 

problem (Lu and Weng, 2004), which may lead to the “salt and 

pepper” effect in the final classification result (Yu et al., 2006). 

Crown-level classification is increasingly demanded in 

comparison with pixel level, and sub-pixel level classifications. 

Species at the individual tree level is often considered as the 

management unit in practical forest application (Dalponte et al., 

2012), and the object-oriented method can overcome the 

limitations of pixel-level classification, such as spatial 
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heterogeneity and mixed-pixel problem (Ke et al., 2014). 

Several methods have been developed for crown-level species 

classification. (Clark et al., 2005) linearly averaged the pixel 

spectra within a manually-delineated crown area as the crown-

scale spectra for tropical rain forest species classification, and 

the highest crown-scale classification accuracy of seven species 

reached 92% with the linear discriminant analysis (LDA) and 

30 optimal bands. (Alonzo et al.,2014) integrated Hyperspectral 

imagery with LiDAR data for mapping 29 tree species in Santa 

Barbara, California, USA, and an overall accuracy of 83.4% 

was reported. 

However, crown-level tree species automatic classification is a 

challenging task due to crown-scale spectra have lower purity 

due to the interference of mixed pixel problem and double-side 

illumination problem (Shang and Chisholm, 2014; Zhang and 

Qiu, 2012). This lower purity of crown spectra, therefore, may 

contribute to the lower classification of tree species at the crown 

level. In order to address this issue, we developed an innovative 

method using the combination of spectral and shape 

characteristics of different tree species, which may potentially 

improve tree species classification accuracy. Specific aims of 

this paper are: 1) to segment individual crowns using LiDAR 

derived canopy height model, 2) to calculate the crown-scale 

spectra from CASI hyperspectral imagery using spectral 

normalization method, 3) to classify tree species by applying 

decision tree classifier based on spectral and shape 

characteristics. In order to assess the improvement of this 

method in classifying tree species, the LiDAR-metrics and 

spectral-metrics approaches will be carried out for a 

comparative analysis.  

2. MATERIALS

2.1 Study area 

The study was carried out in an irrigated oasis district in the 

middle reaches of the Heihe River Basin, China. The Heihe 

River originates in the Qilian Mountains and flows through 

Qinghai, Gansu and Inner Mongolia; it is the second longest 

inland river (it eventually flows into the desert) in China. The 

study area encompassed the area between longitudes 97°24′ and 

102°10′E and latitudes 37°41′and 42°42′N (Figure 1). The 

middle reaches of the Heihe River are dominated by a temperate 

arid climate with an annual precipitation of 113.8 mm-183.5mm, 

an annual potential evapotranspiration of 1400–2800 mm, an 

annual sunshine amount of 3000–4000 hours and an average 

annual temperature of 6°C–8°C. The oasis supports irrigated 

agriculture dominated by a variety of planted crops and 

agricultural protection forests that have a large internal spatial 

heterogeneity.  

Figure 1. The location of the study area in the middle reaches of 

the Heihe River Basin. 

2.2 Airborne CASI and LiDAR data acquisition 

CASI-1500 was employed to record hyperspectral imagery on 

29 June 2012. The hyperspectral images had 48 spectral bands 

centered between 382.5 nm and 1055.5 nm, a spatial resolution 

of 1.0 m, a spectral resolution of 7.2nm (Li et al., 2003). The 

small-footprint LiDAR point cloud data used in this study were 

provided by the HiWATER program (Li et al., 2003).  

2.3 Ground survey 

A ground survey was carried out during July 2012 by the 

HiWATER program (Li et al., 2003; Cheng et al, 2014). First, 

the distribution of woody trees and tree species were recorded. 

According to the field survey, poplar (Populus spp.), willow 

(Salix babylonica L.) and Chinese scholar tree (Sophora 

japonica Linn.) were the three dominant species in the study 

area, with poplar being the most dominant. 867 trees in 59 field 

sites were in-situ surveyed, including 556 poplar trees, 165 

willow tree and 146 scholar trees, as illustrated in the Figure 2. 

Within each plot, the vegetation structure parameters of tree 

height and crown diameter were recorded.  

Figure 2. Spatial distribution of the measured trees for three tree 

species: poplar, willow and Chinese scholar. 

3. METHODOLOGY

3.1 Extraction of crown-level structural parameters 

3.1.1 Generation of woody canopy height model:  

In the case of this area of agroforestry, the land cover types 

include tree, cropland, buildings, roads and bare land, and the 

heights of a large number of buildings are similar to those of the 

trees. Therefore, it is impossible accurately to distinguish 

between the canopy and non-canopy pixels using only a height 

threshold derived from the NDSM. In this study, the spectral 

characteristics of trees derived from CASI data were also 

employed to make a further classification of pixels into (a) tree 

canopy pixels and (b) non-canopy pixels that had a similar 

height as those containing trees.  

In this study, the CHM was developed by integrating the 

morphological crown control (MCC) method(Zhao et al., 2013) 

and the spectral index threshold. The rules used to produce the 

CHM for the woody trees in agroforestry are described by Eq. 

(1). 

3 3( )
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( , )
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tree
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Where Ctree is the CHM of the trees. Mean(RVI3×3) is the mean 

value of the simple ratio vegetation index (RVI) calculated 

using the red and near-infrared bands of the CASI image in the 

3×3-pixel neighborhood region of the pixel (i, j). A 3×3 

neighborhood was used to overcome the positional bias 

between the NDSM and the CASI hyperspectral image. TRVI is 
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the RVI threshold, which was set as 2.0 in this study based on 

the results of repeated trials. NDSMclose is the NDSM smoothed 

by the morphological closing operatoraccording to earlier 

research(Zhao et al., 2013). Tclose is the threshold used to 

determine tree crown pixels, which was set at 3 m based on the 

results of the field investigation and analysis of the LiDAR 

data(Zhao et al., 2013; Dougherty and Lotufo, 2013).

3.1.2 Individual tree crown algorithm:  

Marker-controlled watershed segmentation is a topological 

algorithm used in mathematical morphology. It has been widely 

and successfully applied in the field of remote sensing image 

processing, including the isolation of tree-level canopies based 

on high-resolution optical or LiDAR data(Wang et al., 2004; 

Chen et al., 2006; Zhao and Popescu, 2007). The marker-

controlled watershed segmentation algorithm was employed to 

delineate the tree-level canopy from the CHM image in this 

study.  

For marker-controlled watershed segmentation, appropriate 

CHM smoothing and potential treetop detection algorithms are 

key steps in obtaining optimum segmentation results. Based on 

the spatial distribution and shape features of the woody trees in 

the study area, a weighted mean filtering method was developed 

to smooth the CHM that had had the invalid values filled. 

Details of the algorithm are given below. 
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where, w is the width of the filtering window. Cw/2,w/2 is the 

filtered height at the center of the window and Ci,j is the height 

of pixel (i, j) in the filtering window; Wi,j is the spatial 

weighting functionits value determines the degree to which 

neighboring pixels of similar height within a moving window 

(w) contribute height information for a predicted central pixel.

Wi,j is defined by a normalized reverse distance, where the

inverse of the combined height gradient and the spatial distance

value, Ti,j, for a given pixel location is divided by the area-based

inverse of Ti,j from the moving window. Si,j is related to the

gradient difference between Ci,j and the central pixel, and Di,j is

related to the distance between Ci,j and the central pixel. a and b

are two adjustment factors. Based on a large number of repeated

trials, for optimum smoothing results, a, b and w were set as 1,

1, and 3, respectively, in this study.

The potential treetops were then detected using the method 

of local maximum detection in the adaptive filtering window. 

The rules for detecting potential treetops were defined as 

follows. 
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where, Cs(i, j) is the pixel (i, j) in the CHM that has been 

smoothed by the weighted mean filtering method within the 

search window. Cs(3×3) represents a 3×3 window configuration 

and Cs(5×5) represents a 5×5 window configuration.  

The size of the search window was determined based on the 

height of the trees. In this study area, it could clearly be seen 

that the high trees were concentrated within certain small areas, 

whereas the low trees were more dispersed. Therefore, if Cs(i, j) 

was higher than 15 m, a small window (3×3) was used to search 

for the potential treetops; if Cs(i, j) was lower than 15 m, a 

larger window (5×5) was employed to search for potential 

treetops. A pixel was determined as being a potential treetop if 

the height of the pixel was greater than or equal to the local 

maximum value within a specific window. 

The traditional watershed segmentation was used to isolate 

different concave basins within the image. However, the crowns 

in the CHM were like salient hills and so the CHM was inverted 

before the watershed segmentation algorithm was applied, as 

illustrated by Eq. (5): 

_ ( )close R close closeC Max C C  (5) 

where Cclose is the value of Cfilled smoothed by the morphological

closing operator46 in order to avoid over-segmentation. Cclose_R

is the inverted value of Cclose.  

Based on the results of the potential treetop detection, the 

pixels in Cclose_R located at the potential treetops were all 

marked as having a value of 0. The thus marked Cclose_R was 

then processed using the watershed segmentation algorithm, as 

illustrated by Eq. (6). Cw is the final tree-level canopy area. 

_( ( , ), )W close R top treeC Mask Watershed C B C (6) 

3.1.3 Crown-level structural parameters calculation and 

validation: 

The results of watershed segmentation usually differ from the 

actual shape of the tree crowns because of the rough surface of 

the CHM. The morphological opening operator was, therefore,

applied to optimize the segmented image. Each of the optimized 

basins represented the area of a single tree crown. Within a 

defined basin, the local maximum pixel in the CHM that had

had the invalid values filled was regarded as being the actual 

treetop and the height of the treetop was taken to represent the 

actual tree height. The average values of the widths in the 

northsouth and eastwest directions for each basin were taken 

as the crown diameter. Due to the lack of in-situ information 

regarding the positions of the individual trees, validation of tree 

structural parameters derived by LiDAR data was conducted at 

the plot scale. Within each plot, the average height and crown

diameter of all the trees as derived from the LiDAR data was 

compared with data from in-situ measurements. 

3.2 Classification of tree species based on spectral and 

shape features

There were a lot of shadows in the canopy and these had a big 

influence on the accurate extraction of reflectance spectra from 

the high-resolution images. To deal with this problem, the CASI 

aerial hyperspectral images were processed using a spectral 

normalization method(Leckie et al., 2003).  

As there was no significant difference between the reflectance 

features of poplar and Chinese scholar tree, the shape 

characteristics related to their crown diameters and heights were 

analyzed. In our study area, the poplars are usually tall with 

small crowns, while the Chinese scholar trees have relatively 

large crowns but are shorter. Therefore, the ratio of height to 

crown diameter (Th/c) is capable of distinguishing the poplars 

from the Chinese scholar trees. The threshold for Th/c was set as 

1.8 based on a number of trails.  

3.3 Accuracy assessment and comparative analysis 

The classification scheme, consisted of ash, maple, oak, and 

other species, was chosen based on our field survey with the 

study area. The total 867 trees were divided into a training data 

set (around 25% for poplar but 50% for other species) and a 

testing data set following the random sampling strategy (see 
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Table 1). Classification accuracy was assessed based on the 

computation of the overall accuracy (OA), producer’s accuracy 

(PA), user’s accuracy (UA), and the Kappa (Kc) statistic 

(Petropoulos et al., 2012). 

In order to conduct comparative analyses, both spectral-metrics 

and LiDAR-metrics classifications were carried out. With the 

spectral-metrics classification, the crown-scale spectrum and 

spectral indexes of an individual tree was extracted from the 

pixel at treetop location in the crown region, and then a c5.0 

classifier was applied to classify the individual tree to a 

particular species. For LiDAR-metrics classification, crown 

shape index and Laser points distribution were implemented to 

generate a decision tree rules using C5.0.  

Table 1. Ground reference data in number of trees used in the 

classification. 

Tree species Total 

number 

Training 

samples 

Testing 

samples 

Poplar tree 556 139 417 

Willow tree 165 83 82 

Chinese 

scholar tree 

146 73 73 

 

4. RESULT AND DISCUSSION 

4.1 Woody CHM 

Figure 3 shows the CHMs that were extracted using different 

methods. It can be seen that both the woody trees and buildings 

are present in the CHM extracted by the MCC method only, 

whereas only the woody trees are present in the CHM extracted 

by integrating the MCC method and the spectral index threshold 

as described in section 3.1.1. It was concluded that the method 

using both the MCC method and spectral index threshold was 

very suitable for areas of agroforestry.  

 
Figure 3. CHM extracted by only the morphological crown 

control method (a) and CHM extracted by integrating the 

morphological crown control method and CASI image (b). 

4.2 Individual tree segmentation 

It is well known that an appropriate CHM smoothing and 

treetop detection algorithms are key steps in obtaining optimum 

crown segmentation results. A CHM smoothing algorithm was 

proposed in this study to improve the accuracy of treetop 

detection. Figure 4 shows a comparison between the original 

CHM, the CHM smoothed by a median filter (Wang et al., 

2004 )and the CHM smoothed by a weighted mean filter. It is 

obvious that the CHM smoothed by the weighted mean filter is 

smoother than that smoothed by the median filter and, at the 

same time, the height gradients between CHM cells are well 

preserved.  

To evaluate the effect of the CHM smoothing algorithm, the 

same treetop detection algorithm and tree recognition algorithm 

were applied to different smoothed CHMs. It was found that the 

RMSE for the number of trees extracted using the CHM 

smoothed by a weighted mean filter was 4.86 trees, which is 

acceptable for estimating plot-level woody biomass density and 

lower than that for the median-filtered CHM (RMSE = 9.2 

trees), as illustrated in Figure 5. These results show that a 

weighted-mean filtered CHM can accurately measure the 

canopy surface morphology and, to some extent, improve the 

accuracy of individual tree segmentation for the sparse tree 

cover found in this study area. 

 
Figure 4. (a) Original CHM, (b) Median filter, (c) Weighted 

mean filter 

 
Figure 5. Extracted number of trees obtained using (a) the 

CHM smoothed by a weighted mean filter and (b) the CHM 

smoothed by a median filter 

4.3 Crown-level spectra calculation  

In this study, to extract the spectral features, 3×3 neighborhood 

regions centered on the treetops that had been detected by 

applying the treetop detection algorithm to the CHM image 

were selected from the spectrally normalized CASI imagery for 

each of the three tree species; the resulting average spectrum for 

each species is shown in Figure 6. 

 
Figure 6. Normalized reflectance spectra of the three tree 

species. 

4.4 Crown-level structural parameters and validation 

Figure 7 shows the tree-level structural parameters (heights and 

crown diameters) extracted from CASI hyperspectral images 

and LiDAR data using a series of image processing algorithms. 

The black crosses show the positions of the treetops. The 

accuracy evaluation results are shown as scatter plots in Figure 

8. The general accuracy of the extracted tree heights is 

acceptable the RMSE is 1.79 m. The accuracy of the extracted 

tree heights decreases as the tree height increases. The accuracy 

of the extracted crown diameters is not as high as that for the 

tree heights  the RMSE is 1.03 m. The crown diameters are 

underestimated in most cases. The main reason for this is 

sheltering by adjacent crowns. 
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Figure 7. Extracted tree-level heights (m) (a) and crown 

diameters (m) (b).  

  
Figure 8. Comparison between average measured values of plot-

level tree structural parameters and estimates derived from 

LiDAR data: (a) tree heights, (b) crown diameters. 

4.5 Crown-level  Tree species classification 

The crown-level tree species classification at crown-level was 

made according to the spectral and shape features described in 

section 3.2. The classification results for the four sub-regions 

are shown in Figure 9.  

 
Figure 9. Tree species classification results for the four sub-

regions in the study area 

4.6 Accuracy assessment 

In this paper, information about tree species and numbers of 

trees (572) in the testing data set (Table 1) acquired from in-situ 

investigations were used to validate the classification results 

based on a confusion matrix method.  

In addition, tree methods including spectral-metrics, LiDAR-

metrics and LiDAR+spectral classification were carried out in 

order to conduct comparative analysis. The classification 

accuracies (OA and Kc) of three classification methods are 

shown in the Figure 10. 

 

 

 

 
Figure 10. Accuracy assessment results of three different 

methods 

The assessment result suggests that the developed classification 

strategy in this paper (OA = 85.12%, Kc = 0.90) performed 

better than LiDAR-metrics method (OA = 79.86%, Kc = 0.81) 

and spectral-metircs method (OA = 71.26, Kc = 0.69) in terms 

of classification accuracy, which indicated that the advanced 

method of data processing and sensitive feature selection are 

critical for improving the accuracy of crown-level tree species 

classification. Unlike hyperspectral data, the LiDAR data 

acquired from semi-leaf-on conditions contain more interactions 

with the upper canopy making the characterization of the spatial 

arrangement of stems and branches better than under leaf-on 

situations (Yao et al., 2012). As a consequence, overall the 

LiDAR variables provided greater accuracy than the 

hyperspectral variables in this study.  

5. CONCLUSION 

In this study, we examined the capacity of airborne LiDAR and 

hyperspectral remote sensing data to accurately classify tree 

species in an agroforestry in the northwestern China using 

structural and spectral variables in isolation and in combination. 

The analysis revealed that a combination of both LiDAR and 

hyperspectral variables yielded an improved discrimination of 

tree species, with an overall accuracy of 85.12% compared to 

LiDAR (79.86%) or hyperspectral (71.26%) variables alone. 

Although the results of crown-level tree species are satisfactory, 

further improvements may include exploration of spectral 

information. For example, applications of the spectral mixture 

analysis for pure crown-scale spectra calculation. Moreover, 

other experimental areas could be tested using this method in 

the further study. It could be concluded that in this paper 

individual crown structure features derived from LiDAR data, 

together with the developed crown-level spectra, may have 

potential for further improving tree species discriminations. 
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