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ABSTRACT: 

 

While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their 

necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and 

untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed 

schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using 

different endmember classes’ spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo 

impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). 

Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs’ difference between 

transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study 

areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but 

weakened the SMA result in another region.  
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1. MANUSCRIPT 

1.1 Introduction 

Spectral mixture analysis (SMA) is majorly applied to estimate 

land cover class fractions from remotely sensed data, especially 

for medium and coarse spatial resolution imageries. It assumes 

that a mixed pixel in a remote sensing image is comprised by 

several pure land cover types (endmembers). 

 

The main limitation of SMA to acquire accurate result is 

spectral variability. Within-class variability indicates the 

spectral differences within a land cover class. Conversely, 

different land cover types share similar spectral signatures is 

named between-class variability (similarity).  Large within-class 

variability and small between-class variability are reasons of 

causing the spectral confusion.  

 

Spectral transformation, focusing on enhancing the spectral 

characteristics to reduce the within-class variability and to 

enhance the between-class variability, is one of the widely 

applied approaches used in SMA to solve spectral variability 

problems. The discussion of spectral transformation is not 

enough since few studies examine their effectiveness 

comprehensively and systematically. The advantages and 

limitations of each transformed scheme are still unsettled, and 

the necessity of applying transformed schemes has not been 

adequately discussed in the literature.  Therefore, this study 

aims to explore the difference between spectrally transformed 

scheme and untransformed scheme to find out which 

transformed scheme performed better in SMA. Next section 

introduces the background of spectral mixture analysis and 

spectral transformed techniques. Section 3 presents the 

experiments as well as the results in two locations with Landsat 

data. Discussion and conclusions are presented in sections 4 and 

5. 

     

2. BACKGROUND 

2.1 Spectral Mixture Analysis  

The assumption of spectral mixture analysis (SMA) is that more 

than one land cover classes exist in a mixed pixel. It targets in 

estimating the land cover classes’ fraction within a mixed pixel. 

SMA can be expressed using equation (1).  
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where kR  = spectral reflectance of mixed pixel on band k 

         
jf  = fraction of endmember j within the pixel  

        
,k jR  = spectral reflectance of endmember j on band k 

       k  = error of band k; n is the number of endmembers 

 

Mean absolute error (MAE) is used to assess the unmixing 

accuracy by calculating the absolute difference between the 

estimated and reference fractions of corresponding land cover 

class. It can be expressed using equation (2).  
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where
,e if  = estimated fraction of sample i 

        
,r if  = reference fraction of sample i  
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         m = number of samples 

 

  

2.2 Spectral transformations  

We have examined nine transformed schemes including 

derivative analysis (DA) (Tsai and Philpot, 1998), principal 

component analysis (PCA) (Richards and Richards, 1999), 

independent components analysis (ICA) (Hyvarinen, 1999; 

Hyvärinen and Oja, 2000), Minimum Noise Fraction (MNF) 

(Boardman and Kruse, 1994; Green et al., 1988), Tasseled Cap 

(TC) (Kauth and Thomas, 1976), normalized spectral mixture 

analysis (NSMA) (Wu, 2004), and Tie spectral (Tie) 

transformation (Asner and Lobell (2000)). These transformation 

methods are summarized in Table 1. 

 

Table 1. Spectral transformation 

Transformation Linearity Reference 

DA(1-3) Linear (Tsai and Philpot, 1998) 

PCA Linear (Richards and Richards, 1999) 

ICA Linear (Hyvarinen, 1999; Hyvärinen 

and Oja, 2000) 

MNF Linear (Boardman and Kruse, 1994; 

Green et al., 1988) 

TC Linear (Kauth and Thomas, 1976) 

NSMA Nonlinear (Wu, 2004) 

Tie  Nonlinear (Asner and Lobell, 2000) 

  

 

3. EXPERIMENTS  

3.1 Study areas and data sources  

Two regions were examined in this study, including Janesville, 

WI, United States, and Asheville, NC, United States. Janesville 

is located in the western shore of Lake Michigan, presenting as 

the humid continental climate. Flat plain is the major landscape 

in Janesville. Asheville is the largest city in western North 

Carolina. It is located in the Blue Ridge Mountains where two 

rivers, the Swannanoa River and French Broad River, merge 

together. Mountainous characteristics are significant in 

Asheville area. Residential buildings are constructed based on 

its local terrain. All study areas are mainly covered by 

commercial buildings, freeways, parking lots, residential 

houses, soil, and vegetation (tree and grass).   

 

A scene of Landsat 8 Operational Land Imager (OLI) imagery 

(Janesville: June 3rd, 2014) and a scene of Landsat 5 Thematic 

Mapper (TM) (Asheville: June 2nd, 2009) imagery were 

employed in this study. Image preprocessing, including 

radiometric calibration, atmospheric correction using Fast Line-

of-sight Atmospheric Analysis of Hypercube (FLAASH) with 

corresponding parameters, and reprojection to Universal 

Transverse Mercator (UTM) (Janesville: Zone 16; Asheville 

and Columbus: Zone 17), were applied. Historical high spatial 

resolution images (Janesville: June 12th, 2014; Asheville: May 

30th, 2009) acquired on Google Earth were utilized to assess the 

mapping accuracy.   

 

 
Figure 1. Study areas of Janesville WI, and Asheville NC. 

 

 

3.2 Method  

3.2.1 Spectral transformation: Spectral transformations were 

applied to the original data using the corresponding methods. In 

particular, DA1-3 (first to third derivative analysis), PCA, ICA, 

MNF, and TC were calculated directly from ENVI and its 

extension models. NSMA was computed using the method 

described in Wu (2004). Tie was created with the method stated 

in Asner and Lobell (2000). 

 

3.2.2 Sample selection: Training samples (pure land cover 

classes’ pixels), including vegetation (V), high albedo 

impervious surface area (ISAh), low albedo impervious surface 

area (ISAl), and soil (S), were selected carefully from the 

transformed images with the assistance of high spatial 

resolution images. The number of training samples of V, ISAh, 

ISAl, and S are 50, and 50 in study areas of Janesville, and 

Asheville respectively. Spectral libraries were constructed from 

the corresponding training samples.   

 

64, and 60 testing samples of Janesville, and Asheville regions 

were collected to access each scheme’s performance. Each 

testing sample is 3 pixels×3 pixels (90m ×90m) to avoid the 

geometric error impact acquired from reprojection and data 

acquisition. Fractions of impervious surface area within the 

testing samples were derived through digitizing the 

corresponding areas in high spatial resolution images. 

 

3.2.3 SMA and accuracy assessment: Fully constraint linear 

spectral mixture analysis was applied to transformed and 

untransformed data 100 times with randomly selected spectra in 

corresponding spectral library under the endmember model of 

V-ISAh-ISAl-S.  

 

The performance of each transformed scheme was evaluated 

through the mean absolute error (MAE). Estimated fractions of 

ISA are calculated by the sum of ISAh’s and ISAl’s fractions in 

the same pixel.  

 

Boxplots were applied to illustrate the general performance of 

each scheme. Significant difference of the mean MAEs between 

transformed and untransformed scheme was tested by Paired-

Samples T test. Mean differences, which indicate the general 
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performance between transformed and untransformed scheme, 

is calculated by using mean MAEs of untransformed subtracting 

the transformed schemes’. Positive value means the mean MAE 

of untransformed scheme is larger than transformed scheme’s 

while negative value represents the opposite consequence. 

Significant values indicate the significance of the test result.  

 

3.3 Results  

The detailed performance of transformed and untransformed 

schemes were presented in the boxplots (Figures 2-3). Paired-

Sample T test results were displayed in Table 2.  

 

3.3.1 Janesville area: The median MAE of the untransformed 

scheme is around 0.11, which is less than most of transformed 

schemes except NSMA. NSMA has the lowest median MAE of 

0.085. Median MAE values of PCA and TC are similar to that 

of the untransformed scheme (0.11). Transformed schemes of 

DA1-3, ICA, MNF, and Tie have slightly higher median MAEs 

than the untransformed scheme, varying from 0.12 to 0.14.  

 

3.3.2 Asheville area: The median MAE of the untransformed 

scheme is the same as that in Janesville (0.10). NSMA still has 

a much lower median MAE than untransformed scheme. 

Schemes of DA1-3, MNF, and Tie have slightly lower median 

MAEs compared to the untransformed scheme (0.10) with 

values around 0.09.  

 

 

 
Figure 2. Boxplot of MAE of Janesville 

 

 
Figure 3. Boxplot of MAE of Asheville 

 

Table 2 reveals that only NSMA demonstrates significant 

improvement with the mean MAEs lower than the 

untransformed scheme in all study areas (positive values in two 

areas). Paired-Samples T test also illustrates that the differences 

between NSMA and the untransformed scheme are significant 

as their p values are less than 0.05. Paired-Samples T test only 

indicates the significant difference of DA1-2 in Asheville while 

schemes of DA3, MNF, and Tie have p values larger than 0.05. 

Other transformed schemes, such as TC and ICA are with lower 

accuracy as the mean differences are negative in all study areas. 

Moreover, significant difference between untransformed scheme 

and TC and ICA cannot be obtained since their p values are 

larger than 0.05.  

 

Table 2. Results of Paired-Samples T test and comparison  

Schemes Mean difference Sig. (2 tailed) 

 Jane. Ash. Jane. Ash. 

DA1 -0.008 0.015 0.054 0.011 

DA2 -0.008 0.020 0.043 0.001 

DA3 -0.009 0.012 0.059 0.058 

PCA 0.001 -0.001 0.894 0.864 

ICA -0.009 -0.015 0.031 0.024 

MNF -0.009 0.007 0.069 0.219 

TC -0.001 -0.002 0.908 0.763 

NSMA 0.015 0.022 0.001 0.000 

Tie -0.009 0.008 0.071 0.152 

   

 

4. DISCUSSION   

This study compared nine spectral transformations in two 

different study areas respectively. 100 times repeated test with 

different endmembers’ spectra were employed to reveal the 

reliability of each scheme.  

 

DA can get rid of unnecessary signal components and highlight 

minor absorption features by using spectral smoothing and 

feature reduction method. It, however, can also raise the 

possibility of ignoring essential spectral features (Youngentob 

et al., 2011). the performance of DA varied from places to 

places because of the existence of spectral variability. Unstable 

performance of the DA was concluded as no consistent results 

were occurred in this study. 

 

PCA, MNF, and TC did not perform well in this study. The 

limitation of PCA and MNF may be attributed to the reason that 

many subtle material substances in Landsat imageries cannot be 

identified by second-order statistic (Wang and Chang, 2006), 

resulting in confusion between classes. Moreover, the last three 

bands of PCA, TC and MNF contain little variance. They may 

reduce the between-class variance and increase the within-class 

variance, adding more confusion during the fraction calculation.  

 

ICA’s results were opposite to the study of Wang and Chang 

(2006). It weakened the accuracy compared to second-order 

statistics-based methods like PCA and MNF. It may be attribute 

to the reason that ICA only conserves crucial and critical 

information such as anomalies, endmembers, and small targets 

instead of variance which preserved by PCA and MNF (Wang 

and Chang, 2006). However, the pattern of PCA and MNF are 

also not clear. Because results indicated that their performance 

varied from places to places as well.  

 

NSMA is effectively addressing the confusion between 

impervious surface area and soil effectively since between-class 

variance between soil and impervious surface increased after 

applying the NSMA. Moreover, the shade effect was removed 

by brightness normalization. NSMA has a similar performance 
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in two study areas, proving the stability of NSMA in urban and 

suburban environment. 

 

 

5. CONCLUSIONS 

This study examined the performance of nine linearly and 

nonlinearly spectral transformations in Janesville and Asheville 

respectively by comparing their MAE with untransformed 

scheme. Many transformed schemes except NSMA could not 

illustrated a stable and exceeding performance in two study 

areas. NSMA showed a consistent performance in two study 

areas. Paired-Samples T test also indicated NSMA’s 

significance in reducing the MAE. DA1-3, MNF, and Tie only 

improved the accuracy in one area but weakened the result in 

another region. TC and ICA weakened the performance in all 

study areas. Therefore, we concluded that NSMA can be 

applied in the urban areas to improve the accuracy of SMA.  

 

 

REFERENCES 

Asner, G.P., & Lobell, D.B. (2000). A biogeophysical approach 

for automated SWIR unmixing of soils and vegetation. Remote 

Sensing of Environment, 74, 99-112 

 

Boardman, J.W., & Kruse, F.A. (1994). Automated spectral 

analysis: a geological example using AVIRIS data, north 

Grapevine Mountains, Nevada. In, Proceedings of the Thematic 

Conference on Geologic Remote Sensing (pp. I-407): 

Environmental Research Institute of Michigan 

 

Green, A.A., Berman, M., Switzer, P., & Craig, M.D. (1988). A 

transformation for ordering multispectral data in terms of image 

quality with implications for noise removal. IEEE Transactions 

on Geoscience and Remote Sensing, 26, 65-74 

 

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms 

for independent component analysis. IEEE transactions on 

Neural Networks, 10, 626-634 

 

Hyvärinen, A., & Oja, E. (2000). Independent component 

analysis: algorithms and applications. Neural Networks, 13, 

411-430 

 

Kauth, R.J., & Thomas, G. (1976). The tasselled cap--a graphic 

description of the spectral-temporal development of agricultural 

crops as seen by Landsat. In, LARS Symposia (p. 159) 

 

Li, S., Kwok, J.T., & Wang, Y. (2002). Using the discrete 

wavelet frame transform to merge Landsat TM and SPOT 

panchromatic images. Information Fusion, 3, 17-23 

 

Portigal, F., Holasek, R., Mooradian, G., Owensby, P., 

Dicksion, M., & Fene, M. (1997). Vegetation classification 

using red edge first derivative and green peak statistical moment 

indices with the Advanced Airborne Hyperspectral Imaging 

System(AAHIS). In, International Airborne Remote Sensing 

Conference and Exhibition- Development, Integration, 

Applications & Operations, 3 rd, Copenhagen, Denmark 

 

Richards, J.A., & Richards, J. (1999). Remote sensing digital 

image analysis. Springer 

 

Tsai, F., & Philpot, W. (1998). Derivative analysis of 

hyperspectral data. Remote Sensing of Environment, 66, 41-51 

 

Wang, J., & Chang, C.-I. (2006). Independent component 

analysis-based dimensionality reduction with applications in 

hyperspectral image analysis. IEEE Transactions on Geoscience 

and Remote Sensing, 44, 1586-1600 

 

Wu, C. (2004). Normalized spectral mixture analysis for 

monitoring urban composition using ETM+ imagery. Remote 

Sensing of Environment, 93, 480-492 

 

Youngentob, K.N., Roberts, D.A., Held, A.A., Dennison, P.E., 

Jia, X., & Lindenmayer, D.B. (2011). Mapping two Eucalyptus 

subgenera using multiple endmember spectral mixture analysis 

and continuum-removed imaging spectrometry data. Remote 

Sensing of Environment, 115, 1115-1128 

 

Zhang, J., Rivard, B., Sánchez-Azofeifa, A., & Castro-Esau, K. 

(2006). Intra-and inter-class spectral variability of tropical tree 

species at La Selva, Costa Rica: Implications for species 

identification using HYDICE imagery. Remote Sensing of 

Environment, 105, 129-141 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-267-2018 | © Authors 2018. CC BY 4.0 License.

 
270




