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ABSTRACT: 
 
Due to the limited spatial resolution of remote hyperspectral sensors, pixels are usually highly mixed in the hyperspectral images. 
Endmember extraction refers to the process identifying the pure endmember signatures from the mixture, which is an important step 
towards the utilization of hyperspectral data. Nonnegative matrix factorization (NMF) is a widely used method of endmember 
extraction due to its effectiveness and convenience. While most NMF-based methods have single-layer structures, which may have 
difficulties in effectively learning the structures of highly mixed and complex data. On the other hand, multilayer algorithms have 
shown great advantages in learning data features and been widely studied in many fields. In this paper, we presented a 1L  sparsity-

constrained multilayer NMF method for endmember extraction of highly mixed data. Firstly, the multilayer NMF structure was 
obtained by unfolding NMF into a certain number of layers. In each layer, the abundance matrix was decomposed into the 
endmember matrix and abundance matrix of the next layer. Besides, to improve the performance of NMF, we incorporated sparsity 
constraints to the multilayer NMF model by adding a 1L  regularizer of the abundance matrix to each layer. At last, a layer-wise 

optimization method based on NeNMF was proposed to train the multilayer NMF structure. Experiments were conducted on both 
synthetic data and real data. The results demonstrate that our proposed algorithm can achieve better results than several state-of-art 
approaches.  
 
 

                                                                 
*  tech_commu@163.com 
 

1. INTRODUCTION 

Hyperspectral remote sensing images generally contain 
abundant spatial and spectral information of the covered areas, 
which can be useful in the applications of earth monitoring, 
land cover classification, mineral exploration, military 
surveillance, etc. (Tong et al., 2016). These images are usually 
captured by space-borne sensors or air-borne sensors. Due to 
the long observation distance and the low spatial resolution of 
hyperspectral sensors, pixels in the acquired hyperspectral 
images are usually a mixture of several ground cover spectrum. 
These pure spectra are known as endmembers and their 
proportions in the pixels are called the corresponding 
abundance fractions (Zhu et al., 2014). Before utilizing the 
hyperspectral images, we need to decompose these mixed pixels 
into a set of endmembers and their corresponding abundances 
first. This process is called hyperspectral unmixing, which 
contains two procedures: endmember extraction and abundance 
estimation (Miao et al., 2007).  
 
Many algorithms have been proposed for endmember extraction, 
such as Vertex component analysis (VCA) (Nascimento et al., 
2005). With the pure-pixel assumption, VCA projects all the 
pixels into a random direction and regard the pixel with the 
largest projection as endmember. Recently NMF has been 
widely studied. The major advantages of NMF are that it does 
not need to assume the existence of pure pixels in the 

hyperspectral images and can decompose the target matrix into 
two nonnegative matrices simultaneously (Wang et al., 2013). 
However, it may has a huge solution space since the cost 
function of traditional NMF is nonconvex.  
 
Many efforts have been made to improve the unmixing 
performance of NMF. Among them, based on the assumption 
that most pixels are mixtures of only a few of the endmembers 
in the images, sparsity constraints based on regularization 
methods have acquired extensive attention. Though many 

(0 1)qL q   regularizers have been incorporated to generate 

sparse results, they may suffer from numerical stability since 
they are nondifferentiable at 0. The 1L regularizer is generally 

the most popular choice for achieving sparse constraints due to 
its stability and effectiveness (Qian et al., 2011). Besides, for 
those highly-mixed and complex data, single-layered NMF may 
have poor performance since it is difficult to effectively 
decompose the complicated data (Cichocki et al., 2007). 
Multilayer structure can decompose the data layer by layer and 
help to extract the tiny features hidden in the data. So multilayer 
structure are generally more effective than single layer in 
learning feature representations of highly mixed data. 
Multilayer algorithms has been also widely studied in many 
areas such as image classification (Chen et al., 2015), 
hyperspectral unmixing (Rajabi et al., 2015), attribute 
representations (Trigeorgis et al., 2017), etc. 
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In this paper, we proposed a 1L  sparsity-constrained multilayer 

NMF ( 1L -MLNMF) unmixing algorithm for highly mixed 

hyperspectral data. The multilayer NMF structure is acquired by 
iteratively decomposing the target matrix into the endmember 
matrix and the abundance matrix in each layer. Due to the 
intrinsic sparsity of the abundance matrix, we added sparse 
constraint to each layer with the 1L regularizer of the abundance 

matrix, which is different from traditional multilayer NMF 
algorithms. Besides, the major contribution of our paper is that 
a novel optimization method was proposed to train the structure 
layer-wisely. To improve the approximation accuracy and 
accelerate the optimization process, NeNMF (Guan et al., 2012) 
was adopted to solve the NMF problem in each layer. 
 
 

2. METHODOLOGY 

The linear mixing model (LMM) has been widely used in 
hyperspectral unmixing due to its simplicity and satisfactory 
performance in most scenes. In this paper, the proposed 
algorithm is built based on LMM. So we first introduce LMM 
in this section. Then NeNMF is further presented, which is the 
foundation of our optimization procedure. At last, the 
formulation of our method is described. 
 
2.1 Linear Mixing Model 

For the hyperspectral data m nR X  with m  bands and n  

pixels, suppose the number of endmembers in the image is c , 

then the mathematical model of LMM can be expressed as 
  
 X = AS + E    (1) 

 

where  m cR A  is the endmember matrix 

 c nR S  is the abundance matrix 

 E  is the noise matrix 
 
Both the endmember matrix and the abundance matrix should 
satisfy some physical constraints. The elements in the 
endmember matrix should be nonnegative since they denote the 
observed energy in certain bands. The abundance matrix should 
subject to the following two constraints: the abundance 
nonnegative constraint, 0ijs  , ijs S , and the abundance 

sum-to-one constraint, 
1

1
c

iji
s


 . 

 
2.2 NeNMF 

NeNMF is an efficient NMF solver based on Nesterov’s optimal 
gradient method (Nesterov, 2005), which has been proven to be 
superior to the multiplicative update rule (MUR) and the 
projected gradient method (PG) in terms of efficiency as well as 
approximation accuracy. 
 
A common cost function of NMF can be written as 
 

 
2

F

1
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2
X WH  (2) 

 

where  m nR X  is the target matrix 
m cR W  and c nR H  are the two decomposed 

nonnegative matrices 
 

Since (2) is nonconvex, it is impractical to obtain the optimal 
solution. The block coordinate descent method is usually used 
to solve it by the following two sub-problems 
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where  t  is the iteration counter 

 
In the method, it alternatively solve the above two sub-problems 
until convergence. NeNMF was built based on the block 
coordinate descent method, which uses Nesterov’s optimal 
gradient algorithm to alternatively minimize them. However, 
before Nesterov’s method can be used, the target function is 
required to be convex and the gradient of the function should be 
Lipschitz continuous. Fortunately, both (3) and (4) meet these 
requirements. They can be solved similarly since they are 
symmetric. Take (3) for example, the method construct two 
sequences { }kY  and  { }kH , and alternatively update them in 

each iteration as follows:  
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where  kY  is the k th  search point 

 kH  is the k th approximate solution 

 ( , )k Y H  is the approximation of ( , )tF W H  on kY  

 LC  is the corresponding Lipschitz constant  

 k  is the combination coefficient 

 
By using the Lagrange multiplier method and the Karush-Kuhn-
Tucker (K.K.T.) conditions of (5), it can be solved as 
 

 
1

( , )t
k k kP F

LC

 
   

 
HH Y W Y   (8) 

 
where  ( )P   can project all the negative elements to zero 

 
By alternatively updating the two sequences, kH  can be 

optimized towards the direction of reducing (3). Until 
convergence, the optimal solution of (3) can be obtained. The 
above procedure can be used to solve (4) in the same way. 
Using Nesterov’s optimal gradient method to alternatively 
minimize (3) and (4), it can reach the local optimum of (2). 
 
2.3 The Proposed 1L -MLNMF Method 

In 1L -MLNMF, the proposed multilayer NMF structure is used 

to decompose the hyperspectral data X . In the first layer, the 
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data is decomposed into the basic endmember matrix and the 
abundance matrix, namely 1W  and 1H . For the l  layer, the 

data matrix lX  which is directly obtained from -1lH , is 

decomposed into lW  and lH . Suppose the number of layers is 

L . So the mathematical representation of the multilayer 
structure can be expressed as 
 

 1 2 L LX W W W H  (9) 

 
Then sparsity constraint is added to the model with the 1L  

regularizer of the abundance matrix in each layer. Then the total 
cost function can be constructed as 
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where  l  is the penalty factor in layer l . 

 
The penalty factor l  is used to estimate the sparsity of the 

abundance matrix in the l th  layer, which is calculated using 

the estimator (Hoyer, 2004) as 
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where  ,l iX  is the i th  band of lX . 

 
The function in (10) is a multi-factor NMF problem. Traditional 
algorithms usually decompose it into two-factor NMFs, which 
is easy to accumulate cumulative error. In this paper, we solve it 
layer-by-layer. In l th  layer, the cost function can be expressed 

as 
 

 
2

1 F 1
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where  1 1 2 1l l φ W W W . 

 
Here we use NeNMF to optimize (12). The gradients of 

( , )l lF W H  and corresponding Lipschitz constants can be 

calculated as 
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Several issues should be considered in the optimization process. 
Firstly, we adopt VCA (Nascimento et al., 2002) and the fully 
constrained least squares method (FCLS) (Heinz et al., 2001) to 
estimate endmembers and abundance fractions for all layers, 
separately. Besides, for the abundance sum-to-one constraint, an 
effective method is adopted to augment the target matrix and the 
endmember matrix as 
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where    is a positive constant. 

 
At last, the optimization will be stopped when the number of 
iterations exceeds the maximum number of iterations maxT  or 

the cost function changes less than the threshold, set to 10-5 in 
this paper, for more than 20 successive times. Our proposed 
algorithm can be summarized as in Algorithm 1. 

Algorithm 1： 1L -MLNMF 

Input: m nX R , c ,  , L , maxT  

Output: m cW R , c nH R  

 

1 X X  

for all layers do 
initialize lW , lH  using VCA and FCLS 

repeat 
calculate l  using (11) 

1 1 2 -1l l φ W W W  

update lW  with Nesterov’s method 

1l l lφ φ W  

augment X , lφ  similarly using (17) 

update lH  with Nesterov’s method 

until stopping criterion is satisfied 

1l l X H  

end for 
 

1 2= LW W W W , and LH H  

 
 

3. EXPERIMENTS AND RESULTS 

In this section, several experiments are conducted on both 
synthetic data and real data to compare our method with several 
existing state-of-art approaches, namely the vertex component 
analysis method (VCA-FCLS), the projected gradient NMF 
method (PGNMF) (Lin, 2007), the minimum volume 
constrained NMF method (MVC-NMF) (Miao et al., 2007), and 
the multilayer NMF method (MLNMF) (Rajabi et al., 2015). 
Spectra from the USGS spectral library are used to generate the 
synthetic data with the method proposed by (Miao et al., 2007). 
To get highly-mixed data, the number of extracted spectra is set 
to 6 and the size of the low pass filter is set to 9×9. The 
parameter concerning the mixing degree of the data,  , is set to 

0.8 to further remove pure pixels. 20-dB white Gaussian noise 
is also added to the data. 
 
In our method, we set 10L  , 20  , and max 1000T  . The 

parameters of the other four approaches are consistent with their 
original work, except that the layer of MLNMF is kept the same 
with our method. Four widely used metrics, including the 
spectral angle distance (SAD), the spectral information 
divergence (SID), the abundance angle distance (AAD) and the 
abundance information divergence (AID) are used to evaluate 
the performance of the methods. Two experiments are 
conducted on the synthetic data. The metrics in each experiment 
is acquired by 20 random tests. 
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3.1 Overall Comparison of Different Methods 

In this experiment, we set 0.6   to generate higher mixing 

degree of the synthetic data. Figure 1 shows the averaging 
experimental results. As can be seen, 1L -MLNMF can generate 

the smallest metrics among all the five tested algorithms in 
terms of AAD, AID, SAD, and SID. In particular, it can also 
achieve better performance than MLNMF since they both have 
multilayer structures. This is mainly owing to the carefully-
designed multilayer model and the effective optimization 
method. In general, our proposed method is superior to the 
other four approaches. 
 

 
                   (a) AAD                                      (b) AID 

 
                    (c) SAD                                      (d) SID 

Figure 1. Performance comparison of different algorithms 

 

3.2 Performance Analysis of Different Number of Layers 

In this experiment, the effect of different number of layers on 

1L -MLNMF is analysed.   is remained to be 0.8. Figure 2 

shows the calculated results. It can be seen that all the four 
metrics decrease with the number of layers increases. Especially, 
when the number of layer is less than 3, all the metrics have a 
big decline. When the number of layers is close to 10, the 
metrics decrease slowly, demonstrating that the unmixing effect 
is reaching its limitation. In general, more layers can help to 
improve the unmixing performance in a certain range. 
 

 
                   (a) AAD                                      (b) AID 

 
                   (c) SAD                                      (d) SID 

Figure 2. Performance comparison of 1L -MLNMF under 

different number of layers 

3.3 Performance Comparison on Real Data 

In this experiment, our method is tested on the Cuprite dataset, 
which has 224 bands and a spectral resolution of 10 nm, 
covering the wavelength range from 0.4 to 2.5 μm. Figure 3 
shows the 30th band of the sub image used in this experiment. 
After removing the low SNR and water-vapor absorption bands 
(including bands 1-3, 105-113, 148-167, and 221-224), a total 
of 188 bands are used in this experiment. The number of 
endmembers is defined as 12, according to the study in 
(Nascimento et al., 2002). Table 1 summarizes the comparison 
results of the five algorithms. Figure 4 shows the estimated 
abundance maps by our proposed method. It can be seen that 
our method could achieve smaller SAD that other methods and 
the estimated abundance maps presented high similarity to the 
published results. 
 

 
Figure 3. Band 30 of the experimental subimage 

 

 1L -

MLNMF 

MVC-
NMF 

PGNM
F 

VCA-
FCLS 

MLN
MF 

Alunite 0.0807 0.0806 0.0954 0.0723 0.1234 
Nontronite#1 0.0827 0.1452 0.1132 0.0717 0.1409 
Buddingtonite 0.1188 0.0860 0.2090 0.0690 0.1030 

Montmorillonite 0.0551 0.0923 0.1217 0.0727 0.0992 
Kaolinite 0.2299 0.2097 0.2536 0.2148 0.2573 

Chalcedony 0.0975 0.1456 0.2384 0.1391 0.1476 
Pyrope 0.0749 0.0976 0.0876 0.1145 0.1041 

Dumortierite 0.1092 0.1404 0.0843 0.0658 0.0951 
Muscovite 0.0744 0.0842 0.0824 0.0783 0.0816 
Andradite 0.0687 0.0957 0.2259 0.1025 0.0676 

Nontronite#2 0.1086 0.0992 0.1257 0.1175 0.1135 
Sphene 0.0521 0.0526 0.0648 0.1267 0.1458 

Mean 0.0960 0.1810 0.1418 0.1037 0.1233 

TABLE 1. Comparison results of different methods in terms of 
SAD 

 
 

4. CONCLUSIONS 

For the endmember extraction of highly mixed data, we have 
proposed a 1L  sparsity-constrained multilayer NMF method in 

this paper. The proposed multilayer NMF model is formulated 
by unfolding NMF into a certain number of layers and adding 
the 1L  regularization terms of the abundance matrices. The cost 

function is built on all the matrices in each layer. And a novel 
optimization method based on NeNMF is further presented to 
solve the multi-factor NMF problem, since it is difficult to 
simultaneously optimize all the endmember matrices and 
abundance matrices. The experimental results demonstrates that 
when the number of layers is less than 10, more layers can help 
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to improve the unmixing performance. Due to the carefully-
designed multilayer structure, our method can also achieve 
better performance than several other state-of-art unmixing 
approaches on both synthetic data and real data.  
 

     
(a) Alunite             (b) Andradite         (c) Buddingtonite  

     
(d) Chalcedony        (e) Dumortierite          (f) Kaolinite 

     
(g) Montmorillonite       (h) Muscovite           (i) Nontronite 

     
(j) Nontronite               (k) Pyrope                (l) Sphene 

Figure 4. The estimated abundance maps by 1L -MLNMF 
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