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ABSTRACT: 
 
Due to the way that remote sensing works, it has natural advantage to detect optical constituents in waters. And many kinds of 
inversion models were constructed based on the three main optical constituents, namely chlorophyll-a (Chl-a), suspended particulate 
matter (SPM), colored dissolved organic matter (CDOM). Except Chl-a used as an indicator of eutrophication, however, the public 
generally cares less about other two parameters and is more familiar with Grade Ⅰ~Ⅴ scheme for utilization and protection 
purposes. Notice the three main optical constituents are also organic-related to some extent. It offers a possible way to estimate 
CODMn via remote sensing. According to field measurement conducted along the Guangzhou section of Pearl River (GPR for short), 
the spatial variation of CODMn in GPR shows some kinds of geographical feature, so does the correlation between CODMn and water 
color constituents. It indicated the complicated contribution of CODMn in GPR or some other urban rivers. Based on the band setting 
of GF-1 satellite, two kinds of inversion model of CODMn in GPR were finally constructed. One directly achieved CODMn from 
regression models of which predictors were different band combinations in different channels of GPR. To make the study more 
practical, the other one first provided empirical models of the three optical constituents, and then estimated CODMn of GPR based on 
its relationship with optical constituents. After all, Chl-a, SPM and CDOM could be distinguished optically, and remote sensing 
models of these three constituents in other studies may also be available. 
 
 

1. INTRODUCTION 

1.1 General Instructions 

In the field of water colour remote sensing, we centre on optical 
properties of water. Due to the longstanding civilization from 
mass media and elementary education, however, the public pays 
more attention to the water quality. The most striking 
distinction is that the Case 1 and Case 2 classification of waters 
is commonly used for bio-optical modelling while most citizens 
are familiar with Grade Ⅰ~Ⅴ scheme for utilization purposes 
and protection objectives. It leads to the three main optical 
constituents as chlorophyll-a (Chl-a), suspended particulate 
matter (SPM), colored dissolved organic matter (CDOM) 
retrieved by remote sensing are not aligned with pollution 
indicators such as chemical oxygen demand (COD), 
biochemical oxygen demand (BOD), total phosphorus (TP), 
ammonia nitrogen and heavy metals. This embarrassing 
mismatch restricts the application of remote sensing in the field 
of water monitoring.  
 
Take permanganate index (CODMn) as an example, it is one of 
important parameters used to assess organic pollution in surface 
water and ground water (Tian et al., 2008). Before remote 
sensing comes into view, field sampling and indoor testing form 
the primary method and provide us the credible CODMn values 
(Baker et al., 1999; Udovichenko and Nabivanets, 2001; 
Udovichenko et al., 2001). But it is a time-consuming and 
laborious work, and is impossible to acquire real-time and 
large-scale data for monitoring. That’s instead the advantage 
where remote sensing lives by. So remote sensing has been 
applied more and more widely in the water quality monitoring 
recently.  
 

For instances, Fu et al (2007) took the Grand Canal through 
southern Jiangsu as the studied area and found Band 1 of 
Landsat TM images was highly correlated with CODMn; Wang 
et al (2003) constructed a BP neural network model to inverse 
CODMn of Poyang Lake from TM data; Yang et al (2007) 
employed TM images of Tai Lake to retrieve CODMn based on 
the empirical relationship with Chl-a which is computed by a 
semi-empirical method; still the Tai Lake, Tao et al (2014) 
proposed an Advanced CODMn Forecast Index (ACFI) to 
estimate CODMn using Landsat-8; Hao et al [2011a, 2011b] 
found the ratio of TM3 and TM5 had high relevance with 
CODMn of Daliangdian Reservior; Wang et al (2011) applied a 
support vector regression (SVR) method to predict CODMn in 
the Weihe River by SPOT-5 data.  
 
Obviously, there are not unified methods to estimate CODMn of 
inland waters. Despite the different band response of satellite 
sensors, the most important reason is that the CODMn is a 
synthetical index rather than a certain substance like Chl-a. It 
refers to the amount of oxygen consumed when the organic 
matter in a given volume of water is chemically oxidized to 
CO2 and H2O by permanganate (Xia, 2005). And this organic 
matter is constructed with organic particulate matter and 
dissolved organic matter in any proportions. Considering the 
various spectral characteristics of organics in different aquatic 
environments, it’s necessary to re-establish the inversion 
method of CODMn in regional studies.  
 
The Pearl River is an extensive river system in southern China 
and supplies water to numerous cities. Among them, the 
Guangzhou City which serves as a political-economic-cultural 
centre of Guangdong province is the most populous one. So 
pollutants like industrial waste, sewage runoff and agriculture 
discharges all make the water quality of this section declined. 
Nevertheless, only few studies have been published on the 
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application of remote sensing in contamination assessment of 
the Guangzhou section of the Pearl River (GPR for short). 
Wang et al (2001) recognized water pollution from TM images 
by qualitatively analysing the gray scale variation of each band 
due to organic pollutants. The result was practical because it 
visually displayed different levels of water quality in line with 
GB3838-88 where the Grade Ⅰ~Ⅴscheme of surface water is 
proposed. Fan and Chen (2009, 2012) computed comprehensive 
pollution index of water quality based on referenced values of 
the Grade Ⅲ water, and then established regression models of 
this index and TM bands to present water pollution. It’s a 
quantitative attempt about this area, but the robust of the 
multiple linear regression and the practice that a single grade 
was referenced are worth discussing.  
 
Therefore, this study is an extension of the previous effort, 
targeting on quantitatively estimating CODMn of the GPR and 
emphasizing on the regional relationship between CODMn and 
water colour constituents in order to combine well-developed 
water colour models. After all, Chl-a，SPM and CDOM could 
be distinguished optically. A remote sensing model for the 
retrieval of these three constituents may achieve more credible 
result. To make the study more practical, we also provide an 
empirical method to get CODMn directly from remote sensing 
images, like GF-1. 

 

2. DATA ACQUISITION 

In strict sense, GPR ranges from the mountain areas in the north 
(Baiyun Mountain) to sea level at the confluence of Pearl River 
in the south.  
 
On 5~6 August 2015, field measurement was conducted along 
the Guangzhou section of Pearl River. As shown in Figure 1, 
there were 27 sampling sites where water samples were 
collected for Chl-a, SPM, CDOM and CODMn test in laboratory; 
bottom sediments were collected for water-tank experiment; 
and water surface spectral were recorded in situ according to 
above-water method (Tang et al., 2004). 

 
Figure 1. Sampling sites distribution of GPR 

 
3. RESULTS AND DISCUSSIONS 

3.1 Spatial variations of CODMn in GPR 

From the field measurement, the lowest CODMn (2.8 mg/L) 
appeared at B3 and B4 located along the back-channel (Hou 
Hangdao) of GPR while the highest (7.2 mg/L) was found at 
A11, A14 and A15 all in the west-channel (Xi Hangdao). It 

indicated that the degree of organic contamination of GPR may 
have some kinds of regional feature. Thus all the sampling 
points were divided into 3 groups geographically: a) the west 
channel represented by A11~A17; b) the front-channel 
represented by A01~A10; c) the back-channel represented by 
B01~B10.  
 
As shown in the boxplot (Figure 3), the median values of 
CODMn decreased from west-channel, front-channel to back-
channel, so do the data ranges and other statistical values. The 
maximum CODMn of front-channel denoted by the upper edge 
was found at A06 which was around LieDe, the downtown area 
of Guangzhou. For the outlier of back-channel, which was 
greater than the threshold exceptions q3 + w × (q3 – q1) in a 
boxplot (q1, the lower quartile; q3, the upper quartile; w, the 
1.5 standard deviations), it’s recorded in B01 where was just the 
downstream of west-channel. These spatial features of CODMn 
were basically in line with previous studies (Wang et al., 2001; 
Ma et al., 2003; Wang et al., 2009). So we regrouped sampling 
sites and the B01 was moved to the west-channel for 
subsequent analysis. 

 
Figure 2. Comparison of CODMn in different parts of GPR 

 
3.2 Relationships between CODMn and optical constituents 

As a synthetic index of water pollutions, CODMn indicates the 
organic content in water. The three kinds of water colour 
constituents which remote sensing concerned are also organic-
related to some extent. Generally speaking, Chl-a is considered 
to be the proxy for phytoplankton; SPM is divided into organic 
and inorganic components; CDOM as the abbreviation of 
colored dissolved organic matter is definitely organic. So the 
correlation coefficients between CODMn and water colour 
constituents were computed based on the regional division in 
section 3.1, and the result was shown in Table 1.  
 

R Chl-a SPM ag440
Front-channel 0.613 0.436 0.546
Back-channel 0.820 0.068 0.550
West-channel -0.063 0.717 0.933
All field sites 0.860 0.520 0.743

Table 1. Correlation coefficients between CODMn and water 
colour constituents in GPR 
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3.2.1 West-channel: For the west-channel, CODMn was 
closely tied to ag440, the absorption coefficient of CDOM at 
440 nm normally as its concentration, and the correlation 
coefficient R was up to 0.933. The correlation between CODMn 
and SPM was also relatively high (R = 0.717), however, the 
concentration variation of SPM under a high concentration of 
CODMn (about 7.2 mg/L) was quite large compared with those 
of CDOM (Figure 3). As for Chl-a, the correlation was 
negligible. Therefore, the CODMn in the west-channel of GPR 
could be estimated from ag440 and their relationship is 
constructed as Eq-1 
 

y = 8.108x0.4243,  R2 = 0.8512   (1) 
 
where  y = CODMn 
 x = ag440 
 
At this point, different regression models were tried to quantify 
this relationship. From the numerical perspective, a complicated 
regression function may generate high value to evaluate fitting 
precision (e.g. R2), but the possibility of sudden changes outside 
the range of training data (over-fitting) could make this model 
far away from the actual. So only linear polynomial, one-term 
exponential model and one-term power model were considered 
based on the sampling data. As shown in Figure 4, all the three 
regression functions reflect the CODMn variation with ag440 
quite well and achieve high R2. However, only the power 
function gives a reasonable trend when the CODMn 
concentration is below 5 mg/L. 
 

 
Figure 3. Measured values of water colour constituents versus 

CODMn in different parts of GPR 
 

 
Figure 4. Different fitting curves of CODMn and ag440 in west-

channel of GPR 
 

3.2.2 Front-channel: For the front-channel, the correlation 
coefficients between CODMn and three optical constituents are 
all around 0.5, an embarrassing value. It says that 1) the CODMn 
of this channel could hardly be obtained from either one of 
optical constituents; 2) the hydrodynamic condition (or water 
environment) here is more complicated so that some 
measurements are unsuited to analysis together; 3) the main 
contribution to CODMn here is non-optical ingredients. The 
latter possibility stands outside the discussion owing to the 
required data is beyond the scope of this paper.  
 
For the first possibility, multivariate linear regression was used 
to evaluate the combined contribution of optical constituents to 
CODMn. We found that the R2 statistic decrease from 0.768 to 
0.428, and the predictor variables were respectively all-the-
three-optical-constituents and Chla-ag440. So the CODMn of 
this channel may be predicted by Eq-2. 
 
y = 5.7687+1.6545x1+1.7073x2+0.7260x3,  R2 = 0.7682   (2) 
 
where  y = CODMn 
 x1 = Chl-aN 

 x2 = SPMN 
 x3 = ag440N 
 
The subscript N indicated that the predictors were all scaled 
between -1 and 1 by normalizing the minimum and maximum 
values of each optical constituent. The minimum values were 
all set to 0, and the maximum values were respectively 120 
μg/L of Chl-a, 80 mg/L of SPM and 0.8 m-1 of ag440 on a 
comprehensive basis of several studies in GPR (Fan, 2012; 
Wang et al., 2009; Ma et al., 2003; Li et al., 2013; Jiang et al., 
2010).  
 
For the second possibility, the scatter plots of CODMn v.s. each 
optical constituent are displayed in Figure 3. It’s observed that 
1) the correlation between CODMn and Chl-a would become 
significant (R = 0.903) if sample points A3 and A5 were 
removed, whose Chl-a concentrations were respectively 93.2 
μg/L and 70.3 μg/L; 2) the correlation coefficient between 
CODMn and SPM would be raised to 0.894 if sample points 
A8~A10 were removed, which SPM concentration were 15 
mg/L, 24 mg/L, 23 mg/L successively; 3) the correlation 
coefficient between CODMn and ag440 would increase to 0.752 
if A1 and A5 were not considered, which ag440 were 0.368 m-1 
and 0.415 m-1 respectively. Upon these assumptions, we 
located the points removed and found they were all near docks 
or factories (Table 2). However, it’s hard to identify whether 
the discharge of industrial wastewater was normal condition 
because the removal of deferent sites would generate different 
sensitive parameter to CODMn. In consequence, the analysis of 
this possibility didn’t bring about any quantitative results. 
 

Sampling sites Nearby buildings 
A01 Nanhai shipyard 
A03 Yuzhu shipyard, Jiali wharf 
A05 Yongxing tile factory, Guangzhou 

Paian Concrete Ltd 
A08 Sha Tau cruise terminal 
A09 Tianzi Wharf 
A10 Xidi Wharf 

Table 2. Abnormal sites of the front-channel and the buildings 
around 
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3.2.3 Back-channel: For the back-channel, Chl-a became 
the highly referential constituent of CODMn since their 
correlation coefficient was 0.820, way above other parameters. 
As in the west case, the CODMn here could be simply modelled 
in Eq-3. 
 

y = 1.2333x0.3137,  R2 = 0.6432   (3) 
 
where  y = CODMn 
 x = Chl-a 
 

 
Figure 5. The fitting curve of CODMn and Chl-a in back-channel 

of GPR 
 
3.2.4 All sites of GPR: Given all the sites of GPR, each 
optical constituent behaved certain correlation against CODmn, 
and the links decreased as follow: Chl-a, ag440, TSM (Figure 
4). Despite different grades, all the scatter trends shared the 
same feature that the correlation became impaired as CODmn 
increased. As a result, even if Eq-4 employed Chl-a to acquire 
CODmn concentration of GPR and it worked out fine (R2 = 
0.767), Eq-1 was still recommended to evaluate high CODmn 
(i.e. those above 6 mg/L for GPR) which was more likely to be 
found in west-channel. This further idicated the complicated 
contribution of CODmn in GPR or some other urban rivers. 
 

y = 0.8832x0.4367,  R2 = 0.7666   (4) 
 
where  y = CODMn 
 x = Chl-a 
 

 
Figure 6. The fitting curve of CODMn and Chl-a in back-channel 

of GPR 
 
 

3.3 Remote sensing retrieval of CODMn 

Benefiting from high spatial resolution and low revisit period, 
the GF-1 satellite is now widely used in many domestic 
industries. The PMS optical sensor on-board could acquire 2m 
resolution images in visible and near-infrared bands (Blue, 450-
520nm; Green, 520-590nm; Red, 630-690nm; NIR, 770-890nm), 
and offer a new way to monitor water qualities in urban.  
 
On basis of regional features of GPR CODMn discussed above, 
two kinds of inversion models were constructed. One of them 
directly achieved CODMn from regression models of which 
predictors were different band combinations in different 
channels of GPR. The combinations include common forms 
such as x1, x1/x2, x1/(x1+x2), (x1-x2)/(x1+x2), x1/(x1+x2+x3), 
(x1±x2)/(x1+x2+x3), etc. And each form was constructed by 
different bands. After comparing the fitting performance, 
regression equations with the highest R2 was shown in Figure 8. 
For the front and west channels, the R2 were both above 0.65 
and the fitting results were acceptable. For the back-channel, 
the statistic R2 was just 0.27 although the fitting curves made a 
roughly good prediction. In order to make up for the lack of 
measurements, all sites of GPR were assembled and the band 
combination B3/(B1+B4) was selected to get CODMn not only 
in the whole GPR but also the back-channel.  
 

 
Figure 7. The CODMn regression models based on GF-1 PMS 

band setting 
 
To make our study more practical, the other one first provided 
empirical models of the three optical constituents, and then 
estimated CODMn of GPR based on its relationship with optical 
constituents discussed above. After all, Chl-a, SPM and CDOM 
could be distinguished optically, and remote sensing models for 
the retrieval of these three constituents in other studies may also 
be available. According to measurement, the fitting equation of 
Chla, SPM and ag440 of each channel was constructed and 
shown in Table 3~5.  
 

 x Fitting equation R2 
Front B3/(B2+B4) y=-236.15x+219.91 0.700
Back B2 y=0.001x-2.618 0.554
West B1/(B3+B4) y=40.358exp(1.092x) 0.679
GPR (B1+B3)/(B1+B2+B4) y=11.322x-5.653 0.686
Table 3. The Chl-a regression models of GPR channels based 

on GF-1 PMS band setting 
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 x Fitting equation R2 
Front (B1+B3)/(B1+B2+B3) y=3.174*10-10 

exp(42.808x) 
0.810

Back (B1+B3)/(B1+B2+B4) y=0.264exp(4.965x) 0.835
West (B2+B4)/(B1+B2+B3) y=9.892*1022x-79.84 0.792
GPR B2/(B3+B4) y=25.094x-2.149 0.224

Table 4. The SPM regression models of GPR channels based on 
GF-1 PMS band setting 

 
 x Fitting equation R2 

Front B1/B3 y=0.09exp(1.89x) 0.500
Back (B1+B4)/(B1+B2+B3) y=-1.25x+0.727 0.402
West (B2+B3)/(B1+B2+B3+B4) y=4.198x+3.375 0.587
GPR (B2+B4)/(B1+B2+B3) y=2.949x-1.059 0.383
Table 5. The ag440 regression models of GPR channels based 

on GF-1 PMS band setting 
 
It’s found that 1) the fitting R2 of ag440 was generally low, so 
the first kind of CODMn inversion model (the direct one) may be 
more suitable to achieve CODMn in west and front channels; 2) 
the fitting R2 of SPM in the three channels were all above 0.79 
while this value fell to 0.22 considering all sites of GPR, it 
indicated the dominant component of SPM in each channel may 
be different.  
 
Upon these fitting equations, four GF-1 PMS images (imaging 
date: Dec. 7, 2016) of GPR were employed to get the CODMn 
distribution. As displayed in Figure 8, the spatial trend of 
inversion result basically concided with field measurments. The 
CODMn of back-channel were lower than those of other two 
parts of GPR in general. And it showed that the CODMn values 
of GPR ranged mainly between 4 mg/L to 8 mg/L, roughly 
belonging to Grade Ⅲ~Ⅳ waters according to Environmental 
Quality Standards for Surface Water (GB 3838-2002). 
 

 
Figure 8. The inversion result of CODMn in GPR based on GF-1 

PMS images 
 

4. CONCLUSION 

Based on field measurement of GPR, this study divided the 
urban river into three channels and analysed the correlation 
between CODMn and the three water colour constituents (Chl-a, 
SPM and CDOM) in the remote sensing domain, then 
constructed two kinds of CODMn inversion models suitable for 
GF-1 images.  
 
These analysis indicated that: 1) the CODMn concentration of 
west-channel was lower than other part of GPR in generl; 2) the 
CODMn of west-channel and back-channel was respectively 
dominated by CDOM and Chl-a while that of  front-channel 
was contributed by all the three optical constituents; 3) the 

CODMn showed higher correlation with Chl-a on the whole of 
GPR; 4) the CODMn inversion directly from band combinations 
of GPF-1 images was applied here, but the  acquisition of 
CODMn from optical constituents also recommended because it 
provided an open port and could be referenced from other 
studies; 5) the inversion CODMn based on GF-1 images (Dec. 7, 
2016) showed the water quality of GPR mainly belonged to  
Grade Ⅲ~Ⅳ. 
 
In view of the complicated contribution of CODMn in GPR, this 
study hold the point that water qualities retrievals via remotely 
sensed images should take regional characteristics and 
composition of target parameter into consideration. 
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