A MATCHING METHOD TO REDUCE THE INFLUENCE OF SAR GEOMETRIC DEFORMATION
Keywords: SAR image, image matching, SURF, SNCC, geometrical deformations
Abstract. There are large geometrical deformations in SAR image, including foreshortening, layover, shade,which leads to SAR Image matching with low accuracy. Especially in complex terrain area, the control points are difficult to obtain, and the matching is difficult to achieve. Considering the impact of geometric distortions in SAR image pairs, a matching algorithm with a combination of speeded up robust features (SURF) and summed of normalize cross correlation (SNCC) was proposed, which can avoid the influence of SAR geometric deformation. Firstly, SURF algorithm was utilized to predict the search area. Then the matching point pairs was selected based on summed of normalized cross correlation. Finally, false match points were eliminated by the bidirectional consistency. SURF algorithm can control the range of matching points, and the matching points extracted from the deformation area are eliminated, and the matching points with stable and even distribution are obtained. The experimental results demonstrated that the proposed algorithm had high precision, and can effectively avoid the effect of geometric distortion on SAR image matching. Meet accuracy requirements of the block adjustment with sparse control points.