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ABSTRACT: 

 

Remote sensing image classification is an effective way to extract information from large volumes of high-spatial resolution remote 

sensing images. Generally, supervised image classification relies on abundant and high-precision training data, which is often manually 

interpreted by human experts to provide ground truth for training and evaluating the performance of the classifier. Remote sensing 

enterprises accumulated lots of manually interpreted products from early lower-spatial resolution remote sensing images by executing 

their routine research and business programs. However, these manually interpreted products may not match the very high 

resolution(VHR) image properly because of different dates or spatial resolution of both data, thus, hindering suitability of manually 

interpreted products in training classification models, or small coverage area of these manually interpreted products. We also face 

similar problems in our laboratory in 21st Century Aerospace Technology Co. Ltd (short for 21AT). In this work, we propose a method 

to purify the interpreted product to match newly available VHRI data and provide the best training data for supervised image classifiers 

in VHR image classification. And results indicate that our proposed method can efficiently purify the input data for future machine 

learning use. 

 

1. INTRODUCTION 

In recent decades, great process has been made in developing and 

launching satellites, which makes it easily to assess high spatial 

resolution remote sensing images. Fine spatial optical sensors 

with metric or sub-metric resolution, such as QuickBird, Ikonos, 

Worldview, as well as Chinese Beijing series, allow more 

detailed and accurate information extraction task. Data from 

these sensors enable advanced applications, such as urban 

mapping, precision agriculture, environmental monitoring, and 

military applications (Verpoorter et al. 2014 and Guan et al. 

2017).  

 

Among these applications, image classification is one of the most 

vital phases for remote sensing image information extraction. 

Generally, supervised image classification relies on abundant and 

high-precision training data, which is often manually interpreted 

by human experts to provide ground truth for training and 

evaluating the performance of the classifier (Huang et al. 2015). 

In addition, in most case, training samples labelling takes lots of 

time and the labelled samples do not work when images changed. 

In this sense, providing exhaustive ground truth for large remote 

sensing images is often not possible. Hence, there is an urgent 

demand to develop a time-saving and accurate sample labelling 

framework.   

  

In this context, researchers have proposed semi-supervised 

classification to deal with the insufficient training samples, by 

taking the unlabelled samples into consideration (Camps-Valls et 

al. 2007). Meanwhile, active learning has received increasing 

attention in recent years, which aims to minimize the cost of 

training sample labelling process (Demir et al. 2011, Di et al. 

2012, Patra et al. 2014, Persello et al. 2011 and Persello et al. 

2012). Both semi-supervised classification and active learning 

can work with few training samples, however, it also needs to 
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develop specific classifier. Thus, semi-supervised classification 

and active learning are super solutions for scientific study when 

there are limited training samples. However, for actual 

production project in remote sensing enterprises, it seems 

unrealistic to develop a new classification algorithm. Taking 

advantage of the existing data and traditional classifiers is vital 

import for timely and efficient actual production project of 

remote sensing enterprises. In the current literature, there exist 

studies exploiting the crowdsourced OpenStreetMap(OSM) data 

as training samples for high-resolution remote sensing 

classification, where OSM data seems a time-saving and cost-

effective way to provide labelled data for image classification 

(Arsanjani et al. 2013 and Johnson et al. 2016). However, due to 

the unprofessional production process and the absence of data 

quality control, OSM data could contain misleading errors. To 

the best of our knowledge, there have been few papers discussing 

insufficient labelling in actual production project. 

 

To date, remote sensing enterprises accumulated lots of manually 

interpreted products from early lower-spatial resolution remote 

sensing images by executing their routine research and business 

programs. These interpreted products describe the land cover by 

assigning each patch a class label, while each patch may contain 

multiple land cover classes. Inspired by the exploitation of OSM 

data as training samples in classification, our work attempt to 

purify the interpreted products to competent of training samples 

for remote sensing classification (Verpoorter et al. 2016). Due to 

the actual production needs, the interpreted products may contain 

misleading errors where a patch may contain multiple classes. 

Moreover, these manually interpreted products may not match 

the VHR image properly because of different dates or spatial 

resolution of both data, thus, hindering suitability of manually 

interpreted products in training classification models, or small 

coverage area of these manually interpreted products. We also 
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face similar problems in our laboratory in 21st Century 

Aerospace Technology Co. Ltd (short for 21AT). 

 

In this work, we propose a method to purify the interpreted 

product to match newly available VHR data and provide the best 

training data for supervised image classifiers in VHR 

classification. Specifically, interpreted products are processed 

based on spectral feature and superpixel segmentation to generate 

training samples. The reminder of this paper is constructed as 

follows. Section II describes the study sites and data sets. Section 

III presents the methodology of our work. Section IV describes 

the experimental results and analysis. Finally, section V 

concludes our work. 

 

2. DATASETS 

As shown in Figure 1, a high-resolution RGB image obtained by 

Beijing-2 satellite over Haidian District in Beijing, China, is 

utilized in the experiment. The RGB image was pre-processed by 

stitching and even colour in terms of the specific requirements of 

actual production project. The Beijing-2 is a satellite 

constellation, which has three satellites each carries a 1m 

resolution panchromatic sensor and a 4m resolution multi-

spectral sensor. More details of Beijing-2 satellite parameter are 

list in Table 1. This satellite constellation has been operated by 

the 21AT since July 10 2015 (Wen et al. 2017). The Twenty First 

Century Aerospace Technology Co., Ltd. is a Beijing based high-

tech enterprise and is the first commercial Earth observation 

satellite operator and service provider in China. The satellite 

constellation can provide daily targeting capability anywhere on 

Earth. The interpreted product is manually interpreted from 

previously acquired coarser resolution images in 21AT. The 

interpreted product of Haidian district is shown in Figure 2, 

which contains three classes: vegetation, built-up area, water. 

 

Parameter Pan image Multispectral image 

Spectral range B5:0.45~0.90 μm 

B1: 0.45~0.52 μm 

B2: 0.52~0.59 μm 

B3:0.63~0.69 μm 

B4: 0.77~0.89 μm 

Spatial resolution 1 m 4 m 

Width 23 km 23 km 

Revisit cycle 1 day 

Designed life 7 years 

Table 1. Parameters of Beijing-2 satellite 

 

 
Figure 1. Pre-processed Beijing-2 image over Haidian District with test regions marked as A, B, and C. 

 

In this study, three test regions are selected to validate the 

proposed framework for the purification of interpreted product 

according to remote sensing images, with each sub-image 

covering about a study area of about 4.2 km×3.1 km, 4.4 km×3.9 

km and 4.4 km×3.5 km, respectively. And all the processes 

implemented in our framework are realized based on the 

MATLAB 2015a.    
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Figure 2. The corresponding interpreted product of Haidian District 

 

 

 
Figure 3. The Graphical Representation of the Overall Framework in This Article 

 3. METHODOLOGY 

3.1 The overall framework 

As it was described before, the interpreted product may be 

generated from remote sensing image of different dates or spatial 

resolution. Spatial resolution difference leads to inconsistent of 

object boundaries in the image and the land cover changes from 

time to time in the high-resolution image. Consequently, it is not 

appropriate to utilize the interpreted product directly as training 
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samples for high resolution image classification. In order to 

reduce the misleading mistakes introduced by the coarse 

interpreted product, it is very crucial to match the interpreted 

product accurately with the high resolution image to be classified. 

Therefore, our work proposed a purification framework, which 

exploits the interpreted product to generate training samples for 

high resolution classification, as illustrated in Fig. 3. It includes 

the following two points: 

(1) Superpixel segmentation and decision fusion between 

interpreted product and high resolution remote sensing images.   

(2) Reassign the class label of each pixel in the interpreted 

product according to three designed spectral analysis indexes. 

 

3.2 Superpixel segmentation  

To relief the boundary offset between the interpreted product and 

the high spatial resolution image, our study employs surperpixel 

segmentation to decline the boundaries according to the high 

spatial resolution image. Firstly, a superpixel segmentation 

algorithm is applied on the RGB image, dividing the image into 

a series of superpixels. In this work, simple linear iterative 

clustering superpixels(SLIC) (Achanta et al. 2010) is employed. 

Supposing an image is to be divided into k superpixels. Pixels are 

clustered according to their colour similarity and proximity in the 

image plane. Besides, two parameters, number of desired 

superpixels and weighting factor between colour and spatial 

differences, need to be defined when applying the SLIC 

segmentation on the image. Subsequently, the class boundary of 

interpreted product is refined according to the superpixel 

segmentation image by decision fusion. In addition, the decision 

fusion is realized by the majority voting according to the 

following rule: 

 

x=x( (Vote(s))
s

argmax
)                              (1) 

 

where x represents the class label for each pixel of the interpreted 

products, and s the superpixel to which the pixel belongs. This 

step aims to eliminate misleading pixels, which refer to the 

boundary offsets of the same object revealed in the interpreted 

product and remote sensing image. 

 

 

Figure 4. Test regions and the corresponding interpreted product and purified labels map 

 

3.3 Spectral analysis 

Apart from boundary offset between interpreted product and 

VHR image, label errors caused by image difference are 

misleading. In our study, a series of spectral index based on 

statistical analysis is proposed to complete the interpreted 

product according to the VHR image, namely, brightness index, 

vegetation-water difference and aquatic plants index. It can be 

expressed as follows: 

(1)  Brightness Index (BI) 

 

BI=R+G+B                                       (2) 

 

where R, G and B represent the pixel values of the pixel in band 

red, green and blue on the image, respectively. As the label of 
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interpreted product is patch based, a patch for one individual 

class may contain pixels of other class in the VHR image. Due to 

the significant difference of brightness, this index can effectively 

distinguish bright and dark class. It can be used to remove 

vegetation from built-up areas, or built-up areas from vegetation. 

(2) Vegetation-water Difference(VWD) 

 

VWD=B-G                                       (3) 

 

Dark vegetation shows similar spectral characteristics with water 

in Beijing-2 in our study, it is important to ensure attribute 

correctness of label which to be training samples for 

classification. To exclude misleading labels between dark 

vegetation and water, the VWD is presented to verify the class of 

interpreted product is matched with VHR image.    

(3) Aquatic Plants Index(API) 

 

API=2*G-(R+B)                                 (4) 

 

In the interpreted product, the water surface which is covered 

with aquatic plants may be marked as water. In fact, aquatic 

plants belong to vegetation according to spectral characteristics. 

Therefore, it is necessary to filter out the aquatic plants from 

water to make sure the best separability of vegetation and water. 

It is found in our study that the API can discriminate the aquatic 

plants from water, effectively. By applying the above index-

based label refinement on the interpreted product, labels with 

uncertainty are corrected to the more appropriate class. 

 

 

Region1 Region2 Region3 

interpreted product purified labels interpreted product purified labels interpreted product purified labels 

vegetation 27.79 19.06 22.22 18.55 25.86 19.25 

Build-up  43.23 33.71 40.81 33.54 43.94 37.17 

water 20.88 13.07 23.02 18.63 19.24 15.64 

Table 2. The intra-class purity for the interpreted product and purified labels of three test images 

 

 
interpreted product purified labels 

JM distance Transformed Divergence JM distance Transformed Divergence 
vegetation build-up  water vegetation build-up  water vegetation build-up  water vegetation build-up  water 

vegetation —— 0.83 0.52 —— 1.03 0.60 —— 1.26 1.49 —— 1.55 1.91 

build-up  0.83 —— 1.26 1.03 —— 1.77 1.26 —— 1.87 1.55 —— 1.99 

water 0.53 1.26 —— 0.60 1.77 —— 1.49 1.87 —— 1.91 1.99 —— 

Table 3. The inter-class separability for Region 1 

 

 
interpreted product purified labels 

JM distance Transformed Divergence JM distance Transformed Divergence 
vegetation build-up water vegetation build-up  water vegetation build-up  water vegetation build-up  water 

vegetation —— 0.75 0.33 —— 0.98 0.40 —— 1.15 1.39 —— 1.41 1.79 

build-up 0.75 —— 1.04 0.98 —— 1.45 1.16 —— 1.87 1.41 —— 1.99 

water 0.33 1.04 —— 0.40 1.45 —— 1.39 1.87 —— 1.79 1.99 —— 

Table 4. The inter-class separability for Region 2 

 

 
interpreted product purified labels 

JM distance Transformed Divergence JM distance Transformed Divergence 
vegetation build-up  water vegetation build-up water vegetation build-up  water vegetation build-up  water 

vegetation —— 0.59 0.85 —— 0.75 0.99 —— 1.41 1.07 —— 1.78 1.33 

build-up 0.59 —— 1.21 0.75 —— 1.82 1.41 —— 1.75 1.78 —— 1.99 

water 0.85 1.21 —— 0.99 1.82 —— 1.07 1.75 —— 1.33 1.99 —— 

Table 5. The inter-class separability for Region 3

 

4. EXPERIMENTS RESULTS AND ANALYSIS 

Three test images are utilized to validate the proposed method for 

the automatic training samples labelling framework. In the 

experiments, the labels purified by the proposed method are 

compared with the manually labelled interpreted product 

according to intra-class purity and inter-class separability. The 

test regions with the corresponding interpreted product and 

purified labels are displayed in Figure 4. As it can be seen from 

Figure 4, class labels are more accurate after purification, which 

are more qualified to be training samples for pixel-based 

classification. Water surface which are covered with aquatic 

plants are all fixed to vegetation. In addition, vegetation around 

buildings is excluded from build-up areas, where in the 

interpreted product they are confusing. Besides, bare soils that 

are caused by image acquisition time are adjusted to the Beijing-

2 image. 

 

Follow-up is about the quantitative evaluation of the 

experimental results. In our study, intra-class variance is adopted 

to describe the intra-class purity, as variance is an important 

indicator of data dispersion. The larger value of the variance, the 

more significant of the volatility it is. In other words, if the 

variance decreased after purification, the intra-class purity is 

increased. The intra-class purity for the interpreted product and 

purified labels are listed in Table 2. It is evident that intra-class 

purity increased significantly after purification for all the three 

test regions. Besides, JM distance and transformed divergence 

are calculated to measure the intra-class separability. These 

values range from 0 to 2.0 and indicate how well the selected 

training samples are statistically separate. A larger value for JM 

distance and transformed divergence represent higher intra-class 

separability. Table 3, Table 4 and Table 5 exhibit the inter-class 

separability of interpreted product and purified labels for the 

three test regions. As can be learned from these tables, inter-class 
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separability for the interpreted product is rather poor, with JM 

distance and transformed divergence for vegetation-build-up 

areas and vegetation-water is lower than 1.0. However, after 

purification, the inter-class separability is improved significantly, 

as all the values are raised to above 1. Besides, the transformed 

divergence for water-building is even increased to 1.99, which 

implying these two class are statistically separate. 

 

 

5. CONCLUSIONS 

In this paper, an innovative method that exploits interpreted 

product and remote sensing image for the generation of training 

samples is proposed. To make the interpreted product pure 

enough to be training samples of high resolution image 

classification, a series of approaches is used successively. To 

verify the effectiveness of our proposed purification framework, 

three test images and their corresponding interpreted product are 

utilized to generate training samples for high resolution image 

classification. Meanwhile, intra-class purity and inter-class 

separability are employed to evaluate the quality of the purified 

training samples. The experimental results illustrate the 

superiority of the proposed method in terms of quantitative 

accuracy and visual interpretation. Further research lies in the 

utilization of the purified training samples for high resolution 

image classification. 
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