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ABSTRACT:

Python is a very popular programming language among data scientists around the world. Python can also be used in hyperspectral
data analysis. There are some toolboxes designed for spectral imaging, such as Spectral Python and HyperSpy, but there is a need for
analysis pipeline, which is easy to use and agile for different solutions. We propose a Python pipeline which is built on packages xarray,
Holoviews and scikit-learn. We have developed some of own tools, MaskAccessor, VisualisorAccessor and a spectral index library.
They also fulfill our goal of easy and agile data processing. In this paper we will present our processing pipeline and demonstrate it in
practice.

1. INTRODUCTION AND MOTIVATION

Python is a go-to programming language of many scientists and
it could also be good programming language for hyperspectral
data analysis. It has advantage of being actively developed, free,
open source programming language. In addition, since it looks
like pseudocode, it is easy to learn and write. There are Python
tools and packages for all kinds of users, and especially for sci-
entists. There are specialized open source tools for hyperspectral
data analysis like Spectral Python (Boggs, n.d.) and HyperSpy
(de la Peña et al., 2017), but the scope of potential usage may be
too narrow and the structure of such an specialized tool can be too
strict for some purposes, for example for transferring data to ma-
chine learning algorithm and developing tools that work together
with them.

In this paper, we utilize some general open source tools for dif-
ferent aspects of hyperspectral data analysis and determine if they
are useful for analysing and visualising hyperspectral images. We
also introduce some new tools and packages, which are our own
work. We aim at providing the reader with a modular set of tools
that can be used in many contexes. These tools are reusable ele-
ments, which work fine on their own and can be used for building
more complex tools. The packages and tools will be evaluated
using following questions: How easy is it to use? How agile is it?
What can we do with it?

2. DIFFERENT ASPECTS OF HYPERSPECTRAL DATA
ANALYSIS

In this section we will go through different aspects of hyperspec-
tral data analysis and an example of how the selected tools can be
used in these subjects. The example is divided into smaller ex-
amples and what has been done on previously is assumed to hold
on to the new example. We go through the example in figures
and in text, and the source code is included in the figures. The
example problem is that we have a hyperspectral image of a for-
est and a dataset of two tree species, birch and pine, in that forest,
and we want to use machine learning to differentiate one from the
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other. First we of course need to import all of the packages, like
in figure 1.

import x a r r a y as x r
import numpy as np
import pandas as pd
import h o l o v i e w s as hv
from s k l e a r n import svm
import s k l e a r n
from s k l e a r n . m o d e l s e l e c t i o n import GridSearchCV
import v i s a c c
import maskacc

hv . n o t e b o o k e x t e n s i o n ( ’ m a t p l o t l i b ’ )

Figure 1. Importing all necessary packages and declaring that
Holoviews should use Matplotlib backend.

2.1 Handling hyperspectral data

For handling hyperspectral data, we recommend the xarray1

package (Hoyer and Hamman, 2017). It provides multidimen-
sional arrays and datasets with metadata. It is an actively devel-
oped open source project by the pydata team. The basic usage
of xarray is relatively easy and for more advanced users it offers
plenty of options for handling the data. Xarray’s basic idea is to
have netCDF (Rew et al., 1997) compatible multidimensional ar-
ray object in Python. NetCDF stands for network Common Data
Form and the basic idea is that the netCDF file describes itself
to the reader. Xarray is also easily extendable, which means that
one can add new properties as they are needed.

Xarray supports reading spectral image formats like ENVI or
TIFF, and other formats. For reading it uses Rasterio (Gillies
et al., 2013–), which in turn uses GDAL (GDAL Development
Team, 2018). Rasterio is a python toolbox developed solely
to read and write geospatial data, and it does it well. GDAL
(Geospatial Data Abstraction Library) is a lower level C++ li-
brary that translates geospatial raster and vector data.

When xarray has read dataset from file (see figure 2), it is either
DataArray or Dataset. There are differences between the two, but

1Xarray can be installed with pip (pip install xarray) or conda
(conda install xarray) Python package managers.
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from now on we will assume that the data is in DaraArray format.
DataArray has following properties (see figure 3):

• data, N-dimensional NumPy (Oliphant, 2006) or Dask
(Dask Development Team, 2016) array,

• coords, dictionary of coordinate arrays, one array for each
dimension of the data,

• dims, names of the dimensions,

• attrs, dictionary keeping track of other metadata,

• name, the name of the DataArray,

which follow the netCDF specification. These properties help in

cube = xr . o p e n d a t a a r r a y (
’C : / Use r s / l e a l a n n a /DATAA/ vvkk2 . nc ’
)

w a v e l e n g t h = [ 5 0 7 . 6 0 , 5 0 9 . 5 0 , 5 1 4 . 5 0 , 5 2 0 . 8 0 ,
5 2 9 . 0 0 , 5 3 7 . 4 0 , 5 4 5 . 8 0 , 5 5 4 . 4 0 ,
5 6 2 . 7 0 , 5 7 4 . 2 0 , 5 8 3 . 6 0 , 5 9 0 . 4 0 ,
5 9 8 . 8 0 , 6 0 5 . 7 0 , 6 1 7 . 5 0 , 6 3 0 . 7 0 ,
6 4 4 . 2 0 , 6 5 7 . 2 0 , 6 7 0 . 1 0 , 6 7 7 . 8 0 ,
6 9 1 . 1 0 , 6 9 8 . 4 0 , 7 0 5 . 3 0 , 7 1 1 . 1 0 ,
7 1 7 . 9 0 , 7 3 1 . 3 0 , 7 3 8 . 5 0 , 7 5 1 . 5 0 ,
7 6 3 . 7 0 , 7 7 8 . 5 0 , 7 9 4 . 0 0 , 8 0 6 . 3 0 ,
8 1 9 . 7 0 , 8 3 3 . 7 0 , 8 4 5 . 8 0 , 8 5 9 . 1 0 ,
8 7 2 . 8 0 , 8 8 5 . 6 0 ]

cube . c o o r d s [ ’ w a v e l e n g t h ’ ] = ( ’ band ’ , w a v e l e n g t h )
cube = cube . swap dims ({ ’ band ’ : ’ w a v e l e n g t h ’ })
cube . v a l u e s [ cube . v a l u e s <0]=np . nan

Figure 2. Here we read the cube, attach wavelength data to it and
remove non-physical negative values.

p r i n t ( cube )

<x a r r a y . Da taAr ray ( w a v e l e n g t h : 38 , y : 4120 , x : 3930)>
a r r a y ( [ [ [ nan , nan , . . . , nan , nan ] ,

[ nan , nan , . . . , nan , nan ] ,
. . . ,
[ nan , nan , . . . , nan , nan ] ,
[ nan , nan , . . . , nan , nan ] ] ,

. . . ,
[ nan , nan , . . . , nan , nan ] ,
[ nan , nan , . . . , nan , nan ] ] ,
. . . ,
[ nan , nan , . . . , nan , nan ] ,
[ nan , nan , . . . , nan , nan ] ] ] ,
d t y p e = f l o a t 3 2 )

C o o r d i n a t e s :
∗ l o n g i t u d e ( l o n g i t u d e ) f l o a t 6 4 6 .80 4 e +06 . . .
∗ l a t i t u d e ( l a t i t u d e ) f l o a t 6 4 3 .98 3 e +05 . . .
band ( w a v e l e n g t h ) i n t 3 2 1 2 3 4 5 6 7 . . .
∗ w a v e l e n g t h ( w a v e l e n g t h ) f l o a t 6 4 50 7 .6 5 0 9 . 5 . . .

A t t r i b u t e s :
r e s : [ 1 . −1.]
i s t i l e d : 1
t r a n s f o r m : [ 1 . 0 0 0 0 0 0 0 0 e−01 0 .00000000 e +00 . . .
n c o l s : 3930
rows : 4120
x l l c o r n e r : 398296
y l l c o r n e r : 6804299
c e l l s i z e : 0 . 1

Figure 3. Simple print-command to see what the cube holds
inside.

extracting data from the DataArray, since the user can use either
index based lookups or label based lookups. For example, if we
only had NumPy2 array, we would only know the dimensions by

2NumPy is in practice the Python standard array library.

index, but with DataArray we have names like latitude, longitude
and wavelength3. Then we can extract data from DataArray like
in figure 4 by telling it that we want to see data where latitude is
between 39◦ N and 40◦ N, longitude is between 116◦ E and 117◦

E, and wavelength is between 400 nm and 700 nm.

cube . s e l ( l a t i t u d e = s l i c e ( 3 9 , 4 0 ) ,
l o n g i t u d e = s l i c e ( 1 1 6 , 1 1 7 ) ,
w a v e l e n g t h = s l i c e ( 4 0 0 , 7 0 0 ) )

Figure 4. Here we use xarray’s sel-method to extract the data we
want.

There are also other useful functionalities of xarray DataArray.
For example two or more arrays can be attached to each other
with easy one line command, where the user only has to align the
arrays by common dimension. Generally speaking, xarray han-
dles dimensions well and altering and extracting data using them
is generally quite easy. Xarray also handles missing data well and
there is possibility to use Dask arrays to parallel compute.

Xarray fullfills our criteria of being easy to use and agile. It has
a lot of functionality, enough to keep basic and advanced users
satisfied most of the time.

2.2 Visualisation

For visualizing the xarray data, one excellent solution is
Holoviews4 (Stevens et al., n.d.). Holoviews is a visualization
library that uses Bokeh (Bokeh Development Team, 2014), Mat-
plotlib (Hunter, 2007) or Plotly (Plotly Technologies Inc., 2015)
for showing images. All figures in this paper are produced with
Holoviews using Bokeh or Matplotlib visualisation backends.

Basic idea of Holoviews is that visualizing of data should be easy
and simple. If user wants to see anything, it should not take many
lines of code. In our opinion, Holoviews succeeds in that goal.
As we move on, one will see that all images in this paper are
produced with less than four lines of code. One basic example
of producing Holoviews image is to look at one band of a hyper-
spectral image like in figure 5.

Now that we have figured out how to visualise a single chan-
nel of an image, the next logical step is to want to visualise the
entire multidimensional dataset. This is also easy. Holoviews
supports multidimensional datasets very well and there are data
backends that support multiple different data formats including
xarray. As we can see in figure 6, more complex visualisation is
easy to make. In the example we make a Holoviews dataset out of
xarray DataArray, and tell Holoviews to make a series of images
out of the dataset.

One of the properties of Holoviews is that one can make inter-
active figures using the Bokeh backend with no extra effort. By
having Bokeh backend selected user can right away use interac-
tive tools like zooming the image either by scrolling or drawing
boxes on the image. A little more work is required for using
hover, tapping or selection tools, which all can be programmed to
do what the user wants them to do. An example of usage of tap-
ping and selection tools are using them to select data for further
analysis or activating other visualisation with them.

3Note, that the user can freely name the dimensions. The user is not
stuck with these names.

4Holoviews can be installed with pip (pip install holoviews) or
conda (conda install holoviews) Python package managers.
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cube = x a r r a y . Da taAr ray ( . . . )
hv . Image ( cube . s e l ( w a v e l e n g t h =800 ,

method= ’ n e a r e s t ’ ) )

Figure 5. Here we produce a very simple Holoviews
visualisation by telling Holoviews Image to use the xarray data

we provide it. This is an image of a Finnish forest.

A good platform for using Holoviews is Jupyter Notebook
(Kluyver et al., 2016). Jupyter Notebook is a web application
where user can code in Python and output images and write nar-
ratives between code blocks. The user has to activate Holoviews
by importing it and declaring the visualisation backend like in
figure 1. When one is visualising figures in Jupyter Notebook,
it is possible to fine tune figures, by using output cell magic and
Holoviews opts. We use output cell magic and opts in figure 6,
where lines starting with % or %% are the cell magic lines. In the
example of the figure we tune the size of the font and the size of
the image. This fine tuning is absolutely necessary if one needs
to produce figures for a publication or needs good looking images
for any reason. Matplotlib backend is better suited for publication
quality figures.

Holoviews is purely a visualisation library. The user can make
data move between two images in the same visualisation, but the
developers have not build a way to get this data for further use
and the only way of getting a data output is by coding it. How-
ever, once coded, these background processes are relatively easy
to attach to an image. Holoviews is an open source project and it
is developed by the ioam team. Holoviews is easy to use and it
can be bended to do many things. It makes beautiful images, and
in all is an excellent choise for visualisation.

2.3 Masking and visualizing xarray

Using xarray and Holoviews together is made easy by Holoviews
developers. Xarray is one of the available backends for
Holoviews. That means, one can easily produce an image from
xarray using Holoviews. There is still some difficulties involved,
and to address those difficulties, we use xarrays extendability.
Making an extension to xarray in figure 7 is done by making a
Python class and declaring it as dataset or DataArray accessor.

%%o p t s Image [ f o n t s i z e ={{ ’ t i t l e ’ : 1 5 , \
’ x l a b e l ’ : 1 5 , \
’ y l a b e l ’ : 1 5 , \
’ t i c k s ’ :15}} ,\

f i g s i z e =350]

ds = hv . D a t a s e t ( cube ,
vdims =[ ’ Value ’ ] )

ds . t o ( hv . Image ,
kdims =[ ’ x ’ , ’ y ’ ] ,
dynamic=True )

Figure 6. Here we make a more complicated Holoviews
visualisation by using Holoviews dataset. From using Dataset,

we get a slider that goes through the wavelength bands.

These extensions are relatively easy to make and can extend xar-
ray’s functionalities to anything one might want it to do, within
reasonable limits.

@xr . r e g i s t e r D a t a A r r a y a c c e s s o r ( ’ c a t ’ )
c l a s s C a t A c c e s s o r ( o b j e c t ) :

def i n i t ( s e l f , x a r r a y o b j ) :
s e l f . o b j = x a r r a y o b j
s e l f . c a t = ’ a c a t ’

Figure 7. Extending xarray with a simple Accessor. Here we
declare that CatAccessor is a DataArray accessor and define it.

We have developed two DataArray accessors, MaskAccessor and
VisualisorAccessor5. The reason for developing both of these
tools is that we want to use more complicted background interac-
tivity tracking with Holoviews and get the data out of the visual-
isation.

MaskAccessor is a general masking tool for xarray, and the main
function of it is to help collect data points to further analysis,
such as machine learning or modelling. It provides an interface

5These tools are available at our groups github page http://

github.com/silmae

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-45-2018 | © Authors 2018. CC BY 4.0 License.

 
47



for selecting pixels in n-dimensional datasets. In figure 8 we see
that the accessor is initiated when one imports the xarray and the
accessor. After that every DataArray has the property, and the
user can use the accessor by calling it by name.

import x a r r a y as x r
import maskacc

cube = xr . Da taAr ray ( . . . )
cube .M. dims

Figure 8. When the accessor is imported, every xarray
DataArray created after that has the accessor attribute.

The mask dimensions are set at the initialisation to be the first two
dimensions of the DataArray, but there is the reset method that is
used to change the dimensions, as we see on figure 9. One can
also initialise the mask here or just assign a new mask afterwards.
The MaskAccessor class checks that the shape of the mask is
correct.

import numpy as np
cube .M. r e s e t ( dims =[ ’ a ’ , ’ b ’ ] ,

m a t r i x = [ [ 0 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 ] ,
[ 0 , 1 , 0 , 1 ] ] )

# OR
cube .M. r e s e t ( dims =[ ’ a ’ , ’ b ’ ] )
cube .M. mask = np . a r r a y ( [ [ 0 , 1 , 0 , 1 ] ,

[ 1 , 0 , 1 , 0 ] ,
[ 0 , 1 , 0 , 1 ] ] )

Figure 9. Different ways of assigning a specific matrix as the
mask.

On figure 10 one can see four different selection methods to set
mask on individual points.

# S e l e c t
cube .M. s e l e c t ( [ 0 , 0 ] )
cube .M. s e l e c t ( [ ( 0 , 2 ) , ( 1 , 1 ) ] )

# U n s e l e c t
cube .M. u n s e l e c t ( [ ( 0 , 2 ) , ( 1 , 1 ) ] )

# A l l t o ones
cube .M. s e l e c t e d o n e s ( )

# A l l t o z e r o s
cube .M. s e l e c t e d z e r o s ( )

Figure 10. Different selection methods for MaskAccessor.

Finally, on figure 11 there is three different methods to get the
mask or masked data.

# Get t h e mask as x a r r a y . DataArray
cube .M. m a s k a s x a r r a y ( )

# Get t h e masked p o i n t s as x a r r a y . DataArray
cube .M. where masked ( )

# Get t h e masked p o i n t s as a l i s t
cube .M. t o l i s t ( )

Figure 11. Methods for getting data out of MaskAccessor and
underlyind DataArray.

VisualisorAccessor is a hyperspectral imaging specific visualis-
ing tool for xarray and MaskAccessor. It is designed to make ba-
sic visualizations of xarray DataArray and MaskAccessor mask

with easy one-line commands. For example the image in figure
6 can now be produced with the one line code of figure 12. It is
also easy to add visualisations like this to the VisualisorAccessor.

cube . v i s u a l i z e . b a s i c ( s l i d e r s = [ ’ w a v e l e n g t h ’ ] )

Figure 12. The visualisation on figure 6 can be done with one
line code with VisualisorAccessor.

We have implemented three chooser functions, which access the
mask and select or unselect pixels. They are called Point Chooser,
Box Chooser and Spectre Chooser. Spectre Chooser and Box
Chooser use Bokeh’s box drawing tools for selecting which pixels
are chosen and Point Chooser uses tap tool. Example uses of the
Choosers is on figure 13, and screenshots of the Choosers are on
figures 14 (Point Chooser), 15 (Box Chooser) and 16 (Spectre
Chooser).

l a y o u t b o x = cube . v i s u a l i z e . b o x c h o o s e r ( )
l a y o u t p o i n t = cube . v i s u a l i z e . p o i n t c h o o s e r ( )
l a y o u t s p e c t r e = cube . v i s u a l i z e . s p e c t r e c h o o s e r ( )

Figure 13. VisualisorAccessor has three different chooser tools.

Figure 14. Screenshot of the point chooser.

Finally there is a histogram method (figure 17), that calculates
histograms for each bands and shows those histograms side by
side. This is translated from hsicube (Eskelinen, 2017) MATLAB
package to Python.

2.4 Machine learning

Machine learning can be handled using scikit-learn6 package (Pe-
dregosa et al., 2011). The main idea of scikit-learn is to make

6Scikit-learn can be installed with pip (pip install sklearn) or
conda (conda install sklearn) Python package managers.
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Figure 15. Screenshot of the box chooser.

Figure 16. Screenshot of the spectre chooser.

simple and efficient tools for data analysis. Part of the simplic-
ity is documentation, and with scikit-learn it is done well. There
is flowchart for finding a suitable estimator, and every estimator
is documented so well, that one can easily learn to use them de-
cently.

Another thing we want to point out is the variety of implemented
algorithms. Every well established machine learning algorithm
can be found. Still, there are no duplicates, and the user does not
have to worry about competing implementations, and the API is
consistent through the algorithms.

Other useful properties are flows, parallel computing, fine tuning.
The user can relatively easily make a workflow, that preprosesses
data, does cross-validation on desired estimators with desired pa-
rameters and returns the estimator, that seems to produce the best
result. The basic forms of the estimators are simple, but there are
multiple parameters that one can use to fine tune the estimator.

The usage is simple since the algorithms are well documented
and their API is simple, yet agile. Scikit-learn is also free and
open source, and it is developed by scikit-learn team. It fullfills

r e s u l t = cube . v i s u a l i z e . h i s t o g r a m ( band dim = ’ band ’ )
h i s t i m a g e = r e s u l t [ 0 ]
h i s t c o u n t s = r e s u l t [ 1 ]
b i n e d g e s = r e s u l t [ 2 ]
h i s t i m a g e

Figure 17. Visualisation of the histogram. The histogram tool
returns an image of the histogram, the values of the histogram

and the bin edges.

our criteria of being easy to use. It is agile in a way that user can
make own flows through the algorithms and the user can fine-tune
the algorithms as much as is needed.

Now we can use machine learning on our example problem. First,
in figure 18 we use pandas7 (McKinney, 2010) for reading the tree
dataset and plot it over one of the bands in our cube.

Now we can use the tree coordinates to train a machine learning
algorithm to recognise birch from pine. We take 30 * 30 box
around every tree and calculate histogram of the box. These his-
tograms are used to train the algorithm. We also have to make
nan-values zero for this. In figure 19 we use VisualisorAcces-
sor to make the histograms and goal vector and prepare them for
machine learning.

In figure 20 we train the machine learning algorithm. For this
example we are using support vector machine algorithm. We also
do cross-validiation with GridSearchCV. Both of these functions
are functions from scikit-learn. Then we print out the results, and
that tells us the best accuracy score8 and the best parameters.

In figure 21 use the predictor to predict the species of a 30x30 his-
togram, that is made from a hyperspectral image of a tree. From
the result we could then interpret wheter the estimator estimates
the histogram as a pine or a birch.

7Pandas is in practice the Python standard for tabular and Excel type
data.

8Note, that the score should not be taken too seriously, since this is a
toy example, and birch and pine are really easy to recognise from eatch
other.
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t r e e s p a n d a = pd . r e a d c s v ( ’ t r e e s p a n d a k u v a 2 ’ ,
i n d e x c o l =0)

t r e e s p a n d a = t r e e s p a n d a . s o r t v a l u e s ( ” I ” ) . \
d r o p d u p l i c a t e s ( [ ” I ” , ”P” ] ,
keep=” f i r s t ” )
p o i n t s = hv . P o i n t s ( t r e e s p a n d a ,
kdims =[ ’ I ’ , ’P ’ ] )
hv . Image ( cube [ 2 0 ] ) ∗ p o i n t s

Figure 18. Visualisation of the trees over the image. In this
block we read tree data as pandas DataFrame and visualise the

trees on the top of one band of the cube.

cube . v a l u e s = np . nan to num ( cube . v a l u e s )
X l i s t = [ ]
s i z e = 30
c e l l s i z e = f l o a t ( cube . a t t r s [ ’ c e l l s i z e ’ ] )
add = c e l l s i z e ∗ s i z e / 2
b i n e d g e s = np . a r a n g e ( 0 , 1 , 1 / 2 0 )
i = 0
f o r puu in t r e e s p a n d a . v a l u e s :
p r i n t ( i )
i = i +1
x c o o r d = puu [ 1 ]
# p r i n t ( x c o o r d )
y c o o r d = puu [ 2 ]
# p r i n t ( y c o o r d )
c ropped = cube . s e l ( y= s l i c e ( y c o o r d + add ,

y c o o r d − add ) ,
x= s l i c e ( x coord−add ,

x c o o r d +add ) )
, h i s t , = c ropped . v i s u a l i z e .\

h i s t o g r a m (
b i n e d g e s = b i n e d g e s ,

f l a g = ’ l i n e a r ’ ,
s h o w p l o t = F a l s e ,
band dim=” w a v e l e n g t h ”

)
h i s t f l a t = np . a r r a y ( h i s t ) . f l a t t e n ( )
X l i s t . append ( h i s t f l a t )
X = np . a r r a y ( X l i s t )
y = np . a r r a y ( t r e e s p a n d a [ ’ p l ’ ] )

Figure 19. Calculating histograms and preparing data for
machine learning algorithm.

2.5 Other aspects

Other notable libraries for hyperspectral data analysis are al-
ready mentioned Bokeh for advanced visualisation, scikit-image
(van der Walt et al., 2014) for image data analysis and Tensor-

svc = svm . SVC ( )
p a r a m e t e r s = { ’ k e r n e l ’ : [ ’ l i n e a r ’ ,

’ po ly ’ ,
’ r b f ’ ,
’ s igmoid ’ ] ,

’C ’ : [10∗∗ i f o r i in range (−5 ,4)]}

c l f = GridSearchCV ( svc , p a r a m e t e r s , n j o b s =20)
c l f . f i t (X, y )
c l f b e s t = c l f . b e s t e s t i m a t o r
p r i n t ( c l f . b e s t s c o r e )
p r i n t ( c l f . b e s t e s t i m a t o r )

0 .965723612622
SVC(C= 0 . 1 , c a c h e s i z e =200 , c l a s s w e i g h t =None ,
c o e f 0 = 0 . 0 , d e c i s i o n f u n c t i o n s h a p e = ’ ovr ’ ,
d e g r e e =3 , gamma= ’ a u t o ’ , k e r n e l = ’ p o ly ’ ,
m a x i t e r =−1, p r o b a b i l i t y = F a l s e ,
r a n d o m s t a t e =None , s h r i n k i n g =True ,
t o l = 0 . 0 0 1 , v e r b o s e = F a l s e )

Figure 20. Here we train the machine learning algorithm and
print out the result. caption=Results of the training. Here we see

that best estimator predicts correctly 96.6% of the time.

t r e e 1 p r e d = c l f b e s t . p r e d i c t ( X new . r e s h a p e ( 1 , −1))

Figure 21. Here we use the estimator.

Flow (Abadi et al., 2015) and Keras9 (Chollet et al., 2015) for
deep learning.

Bokeh is a package that has been on the rise in 2017. Bokeh
makes interactive Python visualisations, using JavaScript. It is a
backend of Holoviews, and if one wants to understand Holoviews
deeply, this is one place to look at. Bokeh visualisations are gen-
erally quite beautiful, but it comes with expence of computational
complexity and increased memory usage.

Scikit-image is a sister package of scikit-learn. Scikit-image is
focused on computer vision and image processing. The same ad-
vantages as with scikit-learn apply here. The API is consistent
and simple and the wide variety of algorithms is well curated.

TensorFlow and Keras are deep learning libraries. TensorFlow is
considered to be the state of the art at this field, but the syntax is
difficult and learning curve extremely steep. Keras uses Tensor-
Flow as a backend, and offers simpler syntax. If one is a beginner
on deep learning, Keras is a library to more easily get started, but
as one is becoming more advanced user, TensorFlow’s flexibility
and increased tuning possibilities start becoming more attractive.

3. CONCLUSIONS AND FURTHER WORK

We have gathered and further developed an agile and easy to use
pipeline for hyperspectral data analysis in Python. The tools we
have investigated have wide range of advantages such as simple
API:s, variety of different implementations, back ends and tools
and extendibility.

In addition to that, Python programming language has large user
base and active developer community, which guarantees that
Python keeps up with needs of scientists. The packages men-
tioned in this paper are all actively developed and thoroughly
tested.

9These tools can also be installed with pip or conda.
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Also, especially xarray and Holoviews are good Python tools for
hyperspectral data processing and visualisation. These tools seem
like they are made for this use, but they still provide the generality
of non-specialised tools. Compared to HyperSpy end Spectral
Python our solution is much more modular and open to extending
with new blocks.

Finally we would like to suggest, that in the context of using
Python in hyperspectral data analysis, there is need for devel-
oping a graphical user interface that uses these tools and finding
out best practises for utilising deep learning algorithms. We are
starting to develop the graphical user interface in this summer.

Deep learning algorithms are becoming more and more attractive
when there is more and more computational power available. The
algorithms are computationally intense, but when they are used
correctly they provide strikingly good results. These algorithms
can be applied on many of the problems on the field of hyperspec-
tral data analysis, such as object recognition, classification or for
example analysing the health of a crop.

On this specific toolset there is work to do with parallelisation,
since the datasets are huge and paralellisation would make the
computations faster.

We have also started to develop a Python library for spectral in-
dices, and are quite far in it already. The leading principle of
our implementation is to make a simple implementation of every
index on website indexdatabase.de, and wrap the implementation
lightly with features that help in the usage. The point was to make
the indices easily computable, so that the user could easily use a
loop to go through the indices.

One thing we need to define was the API for selecting bands. For
many of the indices, they are not defined for exact wavelengths
like 745nm, but rather for red light and user needs to define this
as he/she wishes. This is for now done by declaring the defaults
in form of a Python dictionary. The other thing to consider is how
is a band selected. Is it selected only if there is a clear match, the
indice wants wavelength 500nm and our data has exactly that or
is there room for approximation? If the used data is in format of
xarray DataArray or Dataset, then it is possible to use the xarrays
nearest neighbor -selection like in figure 5, otherwise one needs
to implement their own selector. Once the index library is ini-
tialised like in figure 22, one can loop through the indices and
find all the indices that can be computed on the dataset like in fig-
ure 23. Then the user can plot all possible indices with Holoviews
like in figure 24.

from p y s p i n d l import I n d i c e s , s e l e c t o r s
d e f a u l t s = { ’NIR ’ : 8 1 5 . 7 ,

’GREEN’ : 5 4 4 . 2 ,
’RED ’ : 595.3}

d e f a u l t s . u p d a t e (
{k : d e f a u l t s [ ’RED ’ ] f o r k in [ ’ Red ’ , ’R ’ ]}
)

d e f a u l t s [ ’G’ ] = d e f a u l t s [ ’GREEN’ ]
# W i t h o u t d e f a u l t s , we can n o t c a l c u l a t e some i n d i c e s .
i n d i c e s = I n d i c e s ( s e l e c t o r s . f r o m x a r r a y (

’ w a v e l e n g t h ’ ,
method= ’ n e a r e s t ’ ,
t o l e r a n c e =8 .0
) ,

d e f a u l t s = d e f a u l t s )

Figure 22. The initialisation process of spectral indices library.
This is still work in progress.

Other thing we we are considering in developing this package is
bands. How are they defined? There is big difference between a

camera that has the same response on a interval around the mid-
dle value and camera that has more gaussian response. These
differences should somehow be accounted for with software. The
response function could be used in selection, and inbetween val-
ues coud be interpolated from two or more bands based on their
responses. The response function is definately important in presi-
cion applications and this problem needs to be solved.

matches = d i c t ( )
f o r iname , i f u n c in i n d i c e s . i t e m s ( ) :

t r y :
ma tches [ iname ] = i f u n c ( c u b e c r o p p e d )
# The f o l l o w i n g i s n e c e s s a r y t o
# remove i n d i c e s t h a t r e s u l t
# o n l y i n +i n f , − i n f and NaN
i f not np . any ( np . i s f i n i t e ( matches [ iname ] ) ) :

matches . pop ( iname )
c o n t i nu e

# We have now b u i l t a d i c t i o n a r y
# o f i n d e x names and c o r r e s p o n d i n g da ta .
matches [ iname ] . c o o r d s [ ’ index name ’ ] = iname
# We a l s o want t o c l e a n up
# u n n e c e s s a r y c o o r d i n a t e s , i f any remaim
f o r c o o r d i n a t e in [ ’ band ’ ,

’ fwhm ’ ,
’ w a v e l e n g t h ’ ] :

i f c o o r d i n a t e in matches [ iname ] . c o o r d s :
matches [ iname ] = matches [ iname ] . \

drop ( c o o r d i n a t e )
e xc ep t ( KeyError , TypeError , NameError ) :

pass
p r i n t ( s t r ( l e n ( matches ) ) + ’ ma tch ing i n d i c e s found . ’ )

Figure 23. We loop through the indices, and take those that are
sensible.

%%o u t p u t s i z e = 250
%%o p t s Image [ i n v e r t y a x i s =True ] ( cmap= ’ S p e c t r a l ’ )
d a t a s e t = hv . D a t a s e t ( p r e t t y f i e l d ,

kdims =[ ’ index name ’ , ’ x ’ , ’ y ’ ] ,
vdims= ’ Index ’ )

d a t a s e t . t o ( hv . Image ,
kdims =[ ’ x ’ , ’ y ’ ] ,
dynamic=True ) . h i s t ( )

Figure 24. All indices in a dropdown menu. Dropdown menu
comes from the use of Holoviews Dataset.
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