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ABSTRACT: 

 

Remote sensing optical image cloud detection is one of the most important problems in remote sensing data processing. Aiming at 

the information loss caused by cloud cover, a cloud detection method based on convolution neural network (CNN) is presented in 

this paper. Firstly, a deep CNN network is used to extract the multi-level feature generation model of cloud from the training samples. 

Secondly, the adaptive simple linear iterative clustering (ASLIC) method is used to divide the detected images into superpixels. 

Finally, the probability of each superpixel belonging to the cloud region is predicted by the trained network model, thereby 

generating a cloud probability map. The typical region of GF-1/2 and ZY-3 were selected to carry out the cloud detection test, and 

compared with the traditional SLIC method. The experiment results show that the average accuracy of cloud detection is increased 

by more than 5%, and it can detected thin-thick cloud and the whole cloud boundary well on different imaging platforms. 
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1. INTRODUCTION 

China started to launch domestic high-resolution optical remote 

sensing satellites ZY-3 and GF-1/2 in 2012. However, as more 

than 50% of the Earth's surfaces is covered by clouds, a large 

number of optical images contain clouds, reducing the 

utilization of images. Therefore, cloud detection and 

elimination become one of the hot topics in the field.  

 

Early cloud detection methods are mainly based on the albedo 

of the cloud in different spectrum segments, and select the 

appropriate threshold for cloud recognition. Di Girolamo and 

Davies proposed an improved cloud detection method based on 

NDVI for aerial images of the Airborne Visible Infrared 

Imaging Spectrometer (AVIRIS). This method can effectively 

identify the thick cloud, but the detection effect of the thin 

cloud is very poor. For example, during the cloud detection of 

QuickBird images, the lake was misjudged as a thin cloud. 

Janmes J. Simspon et al.used cloud shadow effect and combined 

with AVHRR five-channel data to achieve cloud detection of 

NOAA meteorological satellites. This method is greatly 

influenced by the sun zenith angle. In 2011, Italian scholar 

Riccardo Rossi and others used the singular value 

decomposition (SVD) technology to extract the features of the 

image and applied support vector machine (SVM) classifier to 

detect QuickBird satellite image cloud detection. This method 

achieves cloud detection for high-resolution remote sensing 

satellites. However, simple SVD only constructs feature vectors 

from the grayscale statistical distribution point of view that 

cannot describe the attributes of the cloud in an all-round way. 

In remote sensing images, the thickness and shape of the cloud 

layer are varied. Most of the existing cloud detection methods 

only extract the low-level features of the cloud, so it is difficult 

to adapt to the complex remote sensing images, especially the 

thin clouds under the low contrast background. Yu Q proposed 

a natural image classification algorithm based on a large deep 

convolution neural network, which has obtained high 

classification accuracy on the ImageNet dataset. CNN is one of 

the typical deep learning algorithms, and the parameters in the 

CNN model are obtained by network training through  gradient 

descent method. Trained CNN can fully excavate the features of 

the image, and finally complete the classification of remote 

sensing image. 

 

In this paper, a cloud detection method based on CNN is 

proposed for domestic optical images. Firstly, ASLIC method is 

used to clustering homogeneity pixels to be superpixels; 

Secondly, the multilevel features of the cloud are extracted by 

using the dual-branch CNN network to obtain the model. 

Finally, the superpixel input model generates a cloud 

probability map. The rest of the paper is organized as follows: 

Section II introduces the method of cloud detection; Section III 

is verified through the experiment; Section IV summarizes the 

full text. 

 

2. OUR APPROACH 

In this section, we introduce the details of the deep learning 

cloud detection method. Figure 1 shows flowchart of the 

proposed method. It is the process of inputting superpixel into 

CNN model to obtain a cloud probability map. 
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Figure 1. Flowchart of the proposed method 

 

2.1 CNN structure 

CNN is one of the pioneering research results inspired by the 

knowledge of biological neurology and  reference to its 

structural principles combined with artificial neural networks. It 

has the advantages of local area perception, space or time 

sampling and weight sharing, which greatly reduces the training 

parameters of global optimization. At present, it has become a 

hot topic in the field of deep learning such as image 

classification, object detection and face identification. CNN 

structure consists of input layer, convolutional layer, and fully 

connected layer. Figure 2 shows a simplified schematic diagram 

of the CNN structure. 
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Figure 2 Single branch CNN structure 

 

In this paper, we design a dual-branch CNN structure to 

complete the classification task of multi-level cloud, and 

classify the image blocks that need to be classified into three 

categories: thin cloud, thick cloud and non-cloud. Figure 3 

shows the overall architecture of CNN. In this work, we need to 

divide the images into three classes, so the number of classes on 

the last layer of CNN is 3. In Figure 3, conv# is defined as 

convolutional layer, relu# as a nonlinear rectified linear unit 

function, pooling# is defined as pooling layer, concat# as a 

merger layer, fc# as a fully connected layer. 
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Figure 3 The architecture of our designed CNN 

 

2.2 ASLIC algorithm 

Achanta R proposed simple linear iterative clustering (SLIC) 

based on color and spatial distance in 2010. This method 

generates superpixels by modifying the traditional K-means 

clustering algorithm. It transforms the color image into  

CIELAB color space and XY coordinates to form a five-

dimensional feature vector，and then performing pixel partial 

clustering optimization by constructing the distance metrics for 

the five-dimension feature vector. The SLIC implementation 

steps are as follows: 

1) Initialize the seed. Assuming that the image has N 

pixels, the method pre-divides the image into K superpixels of 

the same size, and the size of each superpixel is N/K, and the 

distance between the center points of each superpixel is 

approximately represented as /S N K  .  

2) Update the seed. In order to avoid the seed points 

falling on the gradient boundary, the seed points are transferred 

to the smallest pixel gradient in the 3×3 neighborhood. The 

calculation formula of the gradient is: 
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3) Assign a label. Assign a class tag to all pixel points in 

the neighborhood of each seed point. 

4) Distance metrics. Including color distance and space 

distance. For each searched pixel, calculate its distance from the 

seed point separately. The distance measurement between the i-

th pixel and the j-th cluster center is defined as: 
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Where dc and ds are the color difference and spatial 

distance between pixels, the weight m representing the ratio of 

color similarity to spatial proximity.  

5) Iterative optimization. Repeat the above steps until the 

convergence error is less than a certain threshold. 

6) Increase connectivity. For multi-connected, discontigu-

ous,oversized superpixels appearing in the segmentation result, 

the labels of the largest neighboring clusters are reassigned to 

the neighboring superpixels. 

 

As shown in Figure 4(b), SLIC algorithm has a high 

overall evaluation in terms of operation speed, object contour 

preservation and superpixel shape, but the generated super-

pixels are difficult to maintain compactness and homogeneity. 

As shown in Figure 4(c), ASLIC adaptively selects the 

compact- ness factor and the superpixel step length. The rule 

shape superpixel will be produced in both the texture and the 

non texture regions. ASLIC dynamically normalizes the 

proximities for each cluster using its maximum observed spatial 

and color distances (ms, mc) from the previous iteration. Thus, 

the distance measure becomes: 
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In this way, the compactness of the superpixel is more 

consistent and does not need to set up m. 
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(a)                                                     (b)                                                         (c) 

Figure 4. An instance of initial cluster center generation. (a) Original RGB image. (b)SLIC (C)ASLIC 
 

3. EXPERIMENTAL RESULTS 

In order to verify the effectiveness of the proposed cloud 

detection scheme, we compare with Shi’s proposed SLIC cloud 

detection method. The algorithm is implemented in the 

hardware environment of Intel (R) Xeon (R) CPU W3565 @ 

3.20GHz 3.19GHz Ubuntu14.04 system and it's achieved by the 

deep learning framework caffe.Considering the research area of 

cloud distribution, we choose the 5 scenes of ZY-3 and GF-1/2 

datasets with cloud content exceeding 20% from June to 

October in the southern China on the ZY-3 Image Cloud 

Service Platform(http://sasclouds.com/query). Among them, the 

ZY-3 image is a multi-spectral data with spatial resolution of 

5.8 meters, and the GF-1/2 image is about 1m of the spatial 

resolution after preprocessing. Among them, the criteria for the 

differentation of thin and thick clouds: through the visual 

observation of the cloud area, the bright white place is thick 

cloud, thin and fuzzy are thin clouds. Small pieces of 55 × 55 

and 111× 111 are extracted by manually using each pixel at the 

center of the image as a training sample. Similarly, from the 

three types of image data, 10 non-training regions with a size of 

500×500 to 800×800 images were used for testing.  

 

The construction of the network structure model is shown in 

Figure 3. It contains eight layers. The first four layers are the 

convolution layer, the middle is the concat layer, and the other 

three layers are fully connected. The convolution filter is set to 

48, 64, 128 and 256, and the filter size is set to 5×5. The 

pooling interval is set to 2, the CNN activation function is 

nonlinear rectified linear unit function (ReLu). Finally, the 

CNN learning multi-level cloud feature is input to SVM 

classifier for cloud detection. Our method cloud detection 

results are shown in Figure 5(d). Shi’s cloud results are shown 

in Figure 5 (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        (a)Original image           (b) Ground truth              (c) SLIC                (d) the proposed method 
Figure 5. Visual comparisons of different methods on cloud detection. 
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In Figure 5, the first and second lines correspond to the images 

of the ZY-3 and the GF-1. Between the two images with high 

contrast background cloud. Although the two methods can 

obtain correct cloud area, our method can obtain more accurate 

boundaries. The third line in Figure5 is the GF-2 image. The 

ground is complex and has bright areas in the background. For 

these complicated situations, the results of SLIC cloud detection 

results 5(c) have been mistaken and missed, and some objects 

such as bare ground and white buildings are mistaken for cloud. 

In our method, there is no false inspection and leakage. 

Through visual evaluation, we can find that the cloud boundary 

is clear in the results of our cloud detection, and it can identify 

the boundaries between thin and thick clouds. In order to 

quantitatively evaluate the cloud detection method, the cloud 

region which is extracted by artificial visual interpretation is 

used as the true value. It's sketching criteria: the precision of the 

cloud boundary blur region is within 2 pixels, and the precision 

of the cloud boundary clear region is within 1 pixels. The 

algorithm is measured quantitatively with three indicators. They 

are the accuracy rate(RR), error rate(ER) and false alarm rate 

(FAR). The calculation formula of the three indicators is as 

follows:  

 

; ;
CC CN NC NC

RR ER FAR
GN TN GN


                 (6)  

 

Where   CC=correctly detected as a cloud 

 GN=ground truth cloud pixels  

 CN=cloud pixels detected as non-cloud pixels 

 NC= non-cloud pixels detected by cloud pixels 

            TN=the total number of pixels in the input image. 

 

The above three indicators RR, ER and FAR are used to 

quantitatively evaluate the effectiveness of different methods. 

Because the comparison method cannot distinguish between 

thin and thick clouds, only the entire detected cloud area is 

evaluated in the results. Table 1 gives the average of the results 

of 30 test images. Considering the three indicators in Table 1, it 

can be seen that the precision of our detection and placement is 

higher than that of the traditional SLIC. The accuracy of the 

correct detection is 0.9483, which is 5.65% higher than that of 

the traditional SLIC algorithm. At the same time, both ER and 

FAR are lower than the traditional SLIC, which means that our 

solution can effectively improve cloud detection accuracy in 

domestic satellite image.  

 

Table 1. Statistics the results of RR、ER and FAR for different 

cloud detections 

 RR ER FAR 

SLIC 0.8918 0.0649 0.0981 

ASLIC 0.9483 0.0058 0.0104 

 

4. CONCLUSION 

This paper focuses on the deep learning of current research 

hotspots and proposes a cloud detection method for domestic 

optical remote sensing images combined with ASLIC algorithm. 

This method can autonomously separate the cloud into compact 

and uniform superpixels, and avoid the weak segmentation 

phenomenon caused by artificial selection parameters. By in 

putting superpixel to the CNN model for prediction, we can get 

the probability map belonging to the cloud area. In the process 

of testing, the method is robust to the detection of thin clouds in 

complex background features such as buildings, bare land, snow 

and so on. Experimental results show that the method is feasible 

for cloud detection with less misjudgement, suitable for the 

cloud and cloudless images, and the average overall detection 

accuracy rate of more than 94%, and it is also suitable for cloud 

detection of different imaging platform images. In addition, 

limited by the number of thin clouds training samples and the 

boundary of thin-thick clouds, We are not very good at 

detecting thin cloud in the edge of thick cloud. After that, we 

will focus on how to improve the accuracy of such thin cloud 

based on existing magnitude training samples.  
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