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ABSTRACT: 

 

To detect wind turbines precisely and quickly in very high resolution remote sensing images (VHRRSI) we propose target mask U-

Net. This convolution neural network (CNN), which is carefully designed to be a wide-field detector, models the pixel class 

assignment to wind turbines and their context information. The shadow, which is the context information of the target in this study, 

has been regarded as part of a wind turbine instance. We have trained the target mask U-Net on training dataset, which is composed 

of down sampled image blocks and instance mask blocks. Some post-processes have been integrated to eliminate wrong spots and 

produce bounding boxes of wind turbine instances. The evaluation metrics prove the reliability and effectiveness of our method for 

the average F1-score of our detection method is up to 0.97. The comparison of detection accuracy and time consuming with the 

weakly supervised targets detection method based on CNN illustrates the superiority of our method.  

 

 

1. INTRODUCTION 

Wind turbines, which convert the wind’s kinetic energy into 

electrical energy, are important clean energy facilities in modern 

society. As the rapidly developing of wind power industry, a 

proper solution is needed to check the number and location of 

wind turbines fast and cheaply for evaluation of installed 

capacity, automatic cartography and environmental surveys. 

With the high development of sensor technology and active 

human earth observation campaigns, remote sensing has 

become an important monitoring means for special targets on 

the ground. With the help of very high resolution optical 

satellite remote sensing images, it is easy to find special targets 

with prominent image features, like planes or wind turbines, 

thereby determining their location and quantity. 

 

Many approaches have been proposed to detect specific targets 

automatically through the monocular remote sensing image. 

Considering the basis of detection model, these methods can be 

categorized into five groups: template matching based methods, 

knowledge based methods, OBIA based methods, machine 

learning based methods and deep learning based methods. 

 

In a template matching based method, a template for each target 

should be generated first and is used to match the image at each 

possible position to find the best matches. Weber J. et al (2012) 

defined a new morphological hit-or-miss transform and 

illustrated its potential as a template matching operator for 

coastline extraction and petroleum tank detection. Sirmaçek B. 

et al (2009) extracted buildings in urban area using a multiple 

sub graph matching method with scale invariant feature 

transform features (SIFT) calculated from two template building 

images. Although simple and powerful for some researches, 

template matching based methods are sensitive to shape and 

viewpoint change and need prior information and parameters 

for template designing. Knowledge based object detection 

approaches generally translate object detection problems into 

hypotheses testing problems by establishing various knowledge 

and rules. Huertas A. et al (1988) assumed the buildings are 

composed of rectangular components and detected buildings 

using a genetic model of the shapes. Ok et al. (2013) modeled 

the spatial relationship between buildings and their shadows to 

automatically detect buildings with arbitrary shapes from 

monocular very high resolution (VHR) remote sensing images. 

Similar to the template-based method, knowledge-based 

methods also require prior knowledge to define detection rules. 

Object-based image analysis (OBIA) partitions remote sensing 

imagery into meaningful image-objects and assessing their 

characteristics through spatial, spectral and temporal scale 

which is the basic conception of OBIA based target detection 

methods. Stumpf A. et al (2011) employed multi-resolution 

segmentation algorithm to get proposal objects and calculated 

color and shape metrics to prepare a sample database with all 

objects assigned either as landslide objects or non-landslide 

objects. After that, a random forest classifier was trained to 

detect landslide areas in the test image. Although the OBIA 

based methods are consistent with the basic knowledge of 

human beings, they still require prior knowledge to obtain 

proper segmentation results and group them into meaningful 

objects. Machine learning based object detection approaches 

can be performed by learning a classifier which captures the 

variation of object appearances and views from the prepared 

training dataset. Sun H. et al (2012.) combined spatial sparse 

coding bag-of-words representation with linear support vector 

machine for target detection. Han J. et al (2014) adopted the 

deep Boltzmann machine to learn high-level features and 

trained the object detector on Bayesian framework. With 

advanced machine learning classifiers and high-level features, 

machine learning based methods have high detection accuracy 

on the training dataset. But most of the features are handcrafted 

or shallow learning-based, whose capability become limited for 

more and more complex detection tasks. 

 

Deep learning based detection methods take the advantage of 

deep learning to extract deep features directly from data via 

convolutional neural networks (CNN). Zhou P. et al (2016) 

developed a transferred deep model and integrated negative 

bootstrapping scheme into detector training. Li S. et al (2018) 
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divided the image into grids and predicted class label and 

position of each grid by a CNN model. Cheng G. et al (2016) 

introduced a new rotation-invariant layer on the basis of 

existing CNN architectures and imposed a regularization 

constraint, which explicitly enforces the feature representations 

of training samples insensitive to rotating, on the object 

function. Most of current deep learning based methods regard 

the target detection as a classification on sliding windows or 

proposal objects, where the CNN is the classifier. The way 

sliding windows or proposal objects generated affect the 

detection efficiency.  

 

In this paper, target mask U-Net is proposed to detect wind 

turbines automatically from full size high resolution Gaofen-2 

fused images. First pixel-wise binary masks of training images, 

which cover the wind turbines and their shadows, are generated. 

Next, both the images and masks are clipped and down sampled 

into blocks with specific scale. The training dataset is composed 

of these image blocks and mask blocks. Thereafter, the target 

mask U-Net, a predefined 44 layers end-to-end CNN, is trained 

on the training dataset. Then, test images with wind turbines to 

be detected are scanned by the target mask U-Net model to 

produce coarse segmentation results. Finally, some post 

processes are executed to eliminate errors and produce 

bounding boxes. 

 

 

2. METHODOLOGY 

The proposed automatic wind turbines detection using target 

mask U-Net has three main steps: (Fig.1) 

Training Images

Training binary masks  

Test Images to be detected

Target mask U-Net

Coarse Segmentation Results

Improved Bounding boxes of 
Wind turbines

Post processes

Wide-field 
Scan and Merge

Train the CNN

 
Figure 1. Proposed method for wind turbine detection 

 

2.1 Step1: Target mask U-Net training 

Wind turbines in remote sensing images are special for their 

shadows, which could be seen clearer than themselves. In this 

study, we considered the wind turbine and its shadow as a 

whole instance. Therefore, we first prepared some full size 

fused high resolution remote sensing images and drew polygons 

to outline the wind turbines and their shadows in these images. 

After rasterizing the polygons, the binary masks which indicate 

the location and shape of wind turbines and their shadow were 

generated for the corresponding remote sensing image. Then, 

each image was clipped into several blocks. Each block covered 

a wide-enough area with a plurality of wind turbines. We down 

sampled those blocks using affine transformation and bilinear 

interpolation algorithm. The binary masks were processed at the 

same time. Those down sampled image blocks and mask blocks 

together formed the training data for target mask U-Net. 

 

The target mask U-Net, which is inspired by semantic 

segmentation researches in computer vision field, is the core 

mathematic model of detection. It is a typical encode-decode 

CNN which classify every pixel in images. The architecture of 

target mask U-Net is shown in Fig.2. 
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Figure 2. The architecture of target mask U-Net 

 

In every convolution layer, a spatial convolution is performed to 

produce a set of feature maps. The spatial convolution over 

images is defined as 

 

, , ', ', ', ' 1, ' 1, '

' 1 ' 1 ' 1

H W D

i j d i j d d i i j j d d

i j d

y f x b   

  

    (1) 

 

where xi,j,d and yi,j,d are the input and output values at position 

(i,j) in the dth channel image. The convolution kernel is f, sized 

3x3 in study, and bd is the bias in the dth channel. The 

exponential linear activation function 
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where x is the input to a neuron, model the activation 

mechanism of neural cells in human brain. To normalize the 

activation of previous layer and speed up training, the batch 

normalization (Ioffe S.et al 2015) layer applies a transformation 

that maintains the mean activation close to 0 and the activation 

standard deviation close to 1.  

 

We put two groups of convolution, activation and batch 

normalization layers together to construct an encode unit. Four 

encode units mixed with max pooling layer were employed to 

extract different scale deep features of wind turbines in training 

dataset. Then we used three up-sample layers and decode units, 

which was composed of one Dropout (Srivastava, N. et al 2014) 

layer followed with two convolution and activation layers, to 

restore background information. The numbers of output filters 

of convolution layers in 7 units were 32,64,128,256,128,64,32. 

Moreover, skip connections were added to refine edges and 
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speed up training. The final decode unit output was fed to a 

binary sigmoid classifier to classify each pixel independently.  

 

In order to solve the unknown parameter in the target mask U-

Net. The loss function was defined as (Long, J. 2015) 

 

log( ') (1 )log(1 ')loss y y y y       (3) 

 

where y was the true binary value of pixels in mask blocks and 

y’ was the predicted probability of target mask U-Net for the 

same pixel. We introduced Adam (Kingma P. et al 2014), an 

algorithm for first-order gradient-based optimization of 

stochastic objective functions based on adaptive estimates of 

lower-order moments, to optimize the loss function. During 

training, inner cross validation was used for model selection. 

 

2.2 Step2: Wide-field Scan and Merge 

After training the target mask U-Net, the next step is to input 

the test image to that model in a proper way. We scanned the 

image by a wide-field sliding window. While the window was 

sliding, every image in that window was down sampled using 

bilinear interpolation algorithm. The down sampled image was 

then fed into target mask U-Net to get coarse target score map 

in pixel-level. We up sampled the predicted result to make sure 

every pixel in the original window had predicted score. The 

score map window moved as the sliding window steps along 

axis. The values of pixels in overlapped area are averaged. Fig.3 

shows a simple schematic of step 2. 
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Figure 3. Wide-field scans and merges 

 

2.3 Step3: Post-processes 

The step two produced a target score map for the input remote 

sensing image. A threshold was used to convert the continuous 

probability of every pixel to binary value (yb). 
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where yb was the binary value, σ was the threshold. However, 

this operation produced many small objects and separate spots 

along the wind turbines in the binary mask. Some post-

processes were employed to eliminate these errors. 

In order to aggregate spots along the wind turbines, we 

combined polygons within a specified distance into a new 

polygon. Connected components smaller than the specified size 

were removed to eliminate solitary objects. The bounding box 

of each remaining connected area was generated to label the 

wind turbine in remote sensing image. The post-processes 

effects are showed in Fig. 4. 

  
(a) before aggregation            (b) after aggregation 

  
(c) before removal                   (d) after removal 

  
(e) before envelope                  (f) after envelope 

Figure 4. Post-processes effects 

 

 

3. EXPERIMENTAL RESULTS 

3.1 Image Datasets and Experiment Parameters 

We have prepared five full size Gaofen-2 fused images, which 

have three bands (RGB) in 1 meter spatial resolution, to test our 

proposed method. These images are acquired from Shanxi 

Province and Shandong Province, R.P. China. There are more 

than fifty wind turbines in every image. The images are 

specially selected to diversify the characteristics of wind 

turbines such as shapes and sizes. Some areas sampled from the 

original image are shown in Fig. 5. 

Item Size (in pixel) 

 width height 

Training image #1 11993 12351 

Training image #2 13853 6987 

Clipped block 2048 2048 

Down sampled block 512 512 
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Table 1. Parameters in training step 

 

In this experiment, we choose two images for training and 

others for test. Parameters in training step can be found in Table 

1.  

 

After about 35 epochs, the loss converged to 0, demonstrating 

the unknown parameters have been solved. The size of sliding 

window was the same with down sampled block and the 

window slides 1024 pixels every step. σ in formula (4) was set 

to 0.5. The distance to be satisfied between polygon boundaries 

for aggregation to happen was 60 metres. The smallest 

allowable connected component size was 200 pixels. 

   
(a) a sub area in test image #1                            (b) detection result of (a)                             (e) a sub area in test image #3 

   
(c) a sub area in test image #2                             (d) detection result of (c)                                (f) detection result of (e)  

Figure 5. Sample areas in test dataset and their detection results

 

 

3.2 Accuracy Assessment Strategy 

In order to objectively evaluate the performance of our 

detection method, we have selected three commonly used 

metrics: precision, recall and F1-score.  

 

We first labelled the location of wind turbines in test images 

(green points in Fig. 5). The metrics were defined as follows: 
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Where TP = total number of bounding boxes with label points 

inside. 

FP = total number of bounding boxes with no label 

point inside. 

FN = total number of label points outside of bounding 

boxes. 

 

3.3 Results and Discussion 

Visual interpretations of the detection results illustrated in Fig. 

5 show that our method is robust and representative by 

detecting most of the wind turbines. In addition to visual 

illustration, the numerical metrics are listed in Table 2. 

 

The precision rates of our detection method on test images are 

all more than 95%. The average precision is up to 0.98, 

demonstrating the exactness of detection results. The good rates 

of recall show that the target mask U-Net has satisfactory 

robustness. Further, the average F1-score is up to 0.97. Over all, 

these metrics indicate the reliability and applicability of our 

method. Furthermore, the metrics of another detection method 

(Zhou, P. et al, 2016.) are listed for comparison, which 

demonstrate the superiority of our method.  
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Figure 6. The score map of a wind turbine in test image 

 

Fig. 6 shows a single wind turbine and its score map. Since the 

wind turbine is small thus diffcult to indentify, the shadow of it 

is very easy to recongnize in the image. One of the high lights 

of the proposed method is that we have forced target mask U-

Net to learn the context relationship between them. The score 

map shows that the target mask U-Net has regarded the wind 

turbine and its shadow as one instance. The high prediction 

score of pillar section helps us to determine the location of the 

wind turbine. The thin and well-connected prediction of shadow 

enhances the reliability of detection. The low prediction score 

of separate vane on the ground, which has no shadow, indicates 

the context relationship has been used to distinguish similar 

objects in wind turbines detection.  

 

The weakly supervised target detection based on CNN (Zhou, P. 

et al, 2016.) essentially translates the target detection problem 

into a classification problem in window level. Thus, both the 

size of sliding window and sliding step affect the accuracy and 

effectiveness of detection. It can be very time consuming to 

detect targets in an entire remote sensing image in that way. 

However, target mask U-Net, as a wide-field detector, not only 

is able to produce the pixel-level visualized prediction, but also 

has higher detection efficiency. Fig. 7 has revealed the 

differences in detection efficiency of these two methods. 

 
Figure 7. Time consuming of two detection methods 

 

 

Test Image Target Mask U-Net (Zhou, P. et al, 2016.) 

 Width Height P. R. F1 P. R. F1 

#1  22531 9823 0.98 1.0 0.99 0.76 0.82 0.79 

#2 17047 15665 1.00 0.97 0.99 0.37 0.69 0.48 

#3 11993 12351 0.97 0.95 0.96 0.81 0.62 0.70 

#4 17375 12048 0.95 0.91 0.93 0.46 1.00 0.63 

Average 0.98 0.96 0.97 0.60 0.78 0.65 

Min 0.95 0.91 0.93 0.37 0.62 0.48 

Max 1.00 1.00 0.99 0.81 1.00 0.63 

Table 2. Numerical results of proposed method and Zhou’s method (P. means precision, R. means recall)

 

 

4. CONCLSION AND FUTURE WORKS 

This study has explored a practical wind turbine detection 

method which introduces target mask U-Net as a wide-field 

detector to detect objects in pixel level. The context information 

between wind turbines and their shadows has been learnt by the 

network to improve the accuracy of detection. Moreover, the 

wide-field detector speed up the detection, saving much more 

time than weakly supervised target detection based on CNN. 

This study has implications for the study of rapid detection of 

significant targets with complex contextual information in high 

resolution remote sensing images. However, the detection 

results of our method are bounding boxes of wind turbines. The 

fine segmentation and location of wind turbines in the bounding 

boxes should be the topic of next researches. 
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