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ABSTRACT: 

 

Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially 

the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, 

significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target 

detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, 

based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the 

training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the 

proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The 

results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where 

the classification accuracy improved from 88.5% to 96.4% and the false alarm rate mitigated from 11.5% to 3.6% compared with 

CFAR respectively. 

 

 

1. INSTRUCTIONS 

Ship detection is of great significance for maritime surveillance, 

fishery activity management and illegally operating ships 

monitoring (Ouchi, 2013). During the past years, Synthetic 

Aperture Radar (SAR) has become a crucial method for ship 

detection (Moreira, 2000). Compared to the optical, infrared and 

hyperspectral sensors, SAR is leading in imaging capability in 

anytime and any weather conditions. In particular, the features of 

metal material ships are more obvious for detection with ocean 

background. This mirrors out the specified the advantages of 

employing SAR systems in ship surveillance (Roarty, 2011). As 

the development of the High Resolution Wide Swath (HRWS) on 

board SAR systems in recent years, the conflicts between the 

high resolution and wide swath have been solved successfully, 

thus marine target surveillance by HRWS SAR system are 

becoming possible (Margarit, 2009; Brusch, 2011). 

 

Currently, algorithms based on Constant False Alarm Rate 

(CFAR) are widely used for ship detection (Goldman, 1988; 

Hwang, 2010; An, 2014). Among them, the most popular 

methods are two parameter CFAR, K-distribution CFAR and 

KSW double threshold method (Gao, 2017; Ji, 2015). Two 

Parameter CFAR algorithm employs the Gaussian distribution to 

estimate the background clusters, and three sliding windows are 

employed to go through the images. Therefore, the image is 

segmented to scattering regions according to the local threshold. 

However, ship detection rate is reduced due to the sea clutter 

distribution, which is hard to be illustrated by Gaussian 

distribution properly under circumstances of terrible ocean 

environment. K-distribution CFAR utilizes k-distribution instead 

of the Gaussian distribution to characterize the sea clutters, to 

make good illustration on the tailing phenomenon of the sea 

clutters during terrible ocean environment by adopting its shape 

parameter. However, the parameters of the k-distribution are 
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uncertain and difficult to be estimated accurately. KSW double 

threshold method uses the idea of information entropy into the 

image segmentation. The methodology can be described as to 

find the maximum value of the sum of the information entropies 

after image classification. In this case, strong Bragg resonance 

will occur under the terrible ocean environment, especially when 

ocean surface is accompanied by strong wind. Therefore, KSW 

double threshold method is easily effected by false alarm, the 

noise with higher reflection can be recognized as the target in 

majority of the cases (Gandhi,1988; Frery, 1997; Smith, 2000; 

Marimo, 2014). Furthermore, a popular ship detection algorithm 

usually consists of three steps: land masking, prescreening and 

discrimination (Enayati, 2015). The land masking stage is always 

based on transcendental knowledge, which severely restricted the 

real-time processing on the satellite. 

 

In terms of the problems mentioned above, this paper presents an 

adaptive algorithm for ship detection in the ocean by using the 

HRWS SAR images. Firstly, the SAR image slices of the non-

water area (including ships, islands, island-reefs, drilling 

platform, seawater farms, etc.) are obtained by water-land 

segmentation. Then, a classifier trained by the GLCM texture 

features of the manually selected ship and non-ship slice images 

is employed to classify the slices to ships and non-ships. 

Accordingly, the ships can be detected under complicated ocean 

conditions. 

 

 

2. METHODOLOGY 

A flowchart summarizing the method proposed in this study is 

presented in Fig. 1, including the following steps: water body 

extraction, ship areas proposal, GLCM texture feature extraction 

and SVM classification. 
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Fig. 1 Schematic flowchart illustrating the ship discrimination method adopted in the present study. 

 

 
Fig. 2 Backscattering intensity value comparisons for land and sea areas. 

 
(a)                                  (b)                                   (c) 

Fig. 3 Schematic diagram of sliding window for the labeling of water pixels, where (a) presents the backscattering coefficient images, 

(b) present the backscattering intensity value and the sliding window, (c) presents the number of marks for each pixel. 

 

2.1 Water Body Extraction 

In this paper, the adaptive sliding window has been applied. The 

water areas are segmented by labeling each pixels of the image 

using the sliding window. Moreover, the size of sliding window, 

the length of sliding steps, the uniformity of the pixels in each 

window and the hard threshold were determined according to the 

backscattering intensity histogram of the images in this algorithm. 

A study on the backscattering coefficients of SAR images has 

shown that the scattering intensities value of ocean are 

significantly different from land (island, island-reef) (Migliaccio, 

2014). Figure2 shows an example of the backscattering 

coefficients of the SAR images for ocean and land area, which 

both follow the Gaussian distribution. However, the scattering 
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(a)                                 (b)                                    (c) 

Fig. 4 Schematic diagram of ship areas proposal based on the water pixels labeling results, where (a) represents the extracted water 

pixels, (b) represents separation results of land and sea, and (c) represents ship areas proposal result. 

 

intensity of the water and land scene share different average value 

and standard deviation, which are -62.69 dB and 7.9 for water 

and -22.86 dB and 10.51 for land respectively. For the SAR 

images with water scene or land scene, the average scattering 

intensities of 95% of the pixels within the image with the 

standard deviation error of 2 plus minus. Therefore, the 

uniformity of the pixels and the hard threshold of the water 

scattering intensity can be determined by features of the 

backscattering intensities histogram of the images. The size of 

the sliding window is related to the size of the ships which is 

required to be detected. Generally, the smaller sliding steps, the 

clearer boundary contour, but this will lead to higher 

computational expenses. Thus, the size of the smallest ship needs 

to be set in advance and will be used as the length of the sliding 

steps of the sliding window, and the size of the sliding window 

should be twice of the sliding steps in order to ensure a 50% 

overlap. Figure 3 illustrates a schematic diagram of sliding 

window for the labelled water pixels. 

2.2 Ship Areas Proposal 

When using the water body extraction algorithm mentioned 

above to label the full images, the small water areas and inland 

areas such as mountain shadows with low scattering intensities 

will be labelled as the water areas. In order to obtain the complete 

ocean scene, post-processing is required for the labelled water 

pixels. Compared to land scene, water region in ocean scene has 

the characteristics such as stronger connectivity, larger area, 

lower scattering intensity and higher homogeneity. Based upon 

these characteristics, 8-connected field of the labelled water 

region is firstly formed, as is shown in Fig. 4a, then the areas of 

in-land water are removed based upon the size of the connected 

domain and the number of times marked as water pixel, the result 

is shown in Fig. 4b. After combining the in-land water areas and 

the land areas, the remaining regions in the image can be regarded 

as ocean scene and non-ocean scene, where the non-ocean scene 

contains targets such as ships, land, island, island-reef, etc. 

Finally, the areas with a large size are removed based on a hard 

threshold. 

2.3 GLCM Textural Features Extraction 

Gray-level co-occurrence Matrix (GLCM) represents the spatial 

dependence of the gray-level and the spatial relationship of gray 

pixels in a particular textural mode (Anfinsen, 2011), which 

performs well especially when presenting local texture in small 

areas. GLCM are normally square matrix, the dimension of 

which is equal to the gray-level of the image. Given two pixels 

with grayscale i and j, and the distance between the two pixels is 

d with relative directions, element G(i, j) presents the times of 

these two pixels appear in the image. Practically, the value of θ 

is chosen as 0°, 45°, 90° and 135°. Generally, the grayscale of a 

gray image is 256. However, the textural features can hardly be 

presented when the grayscale of GLCM is too high and the size 

of window is small. Meanwhile, the computational complexity 

increases exponentially. In this case, the image requires to be 

zoomed based upon its grayscale before computing GLCM. 

Empirical value of 16 is selected for the grayscale and 4 kinds of 

eigenvalues are calculated for GLCM, including angular second 

moment (ASM) energy, entropy (ENT), inverse difference 

moment (IDM) and correlation (COR), which are respectively 

expressed as (Anfinsen, 2011): 
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Where k is the grayscale. Mean and standard deviation (SD) of 

the four eigenvalues were finally selected as the parameters for 

the texture comparisons between ship and non-ship slice images, 

as is shown in Fig.5. Jeffreys-Matusita (J-M) (Bruzzone, 1995) 

distance was applied for the parameter selection combined with 

the acquired ship and non-ship slice images. The J-M distance of 

the parameters can be expressed as follows: 

 
              (5) 

        (6) 

Where J is the J-M distance for the parameter, m1 and m2 are the 

average values of the parameter corresponding to ship and non-

ship slice images, and  are the variance. We calculated 

the J-M distance for all the 12 parameters, including the maximal 
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Fig.5 Features analysis for ship and non-ship slice images. 

 

value, minimum value, average value and standard deviation of 

backscatter intensity of the slice images, the results showed that 

J-M distance for standard deviation of energy and entropy, 

maximal value of backscatter intensity are above 1.9, therefore, 

the three parameters are selected as the optimal combination for 

the classification of ship and non-ship slice images. 

 

2.4 Ship discrimination 

The support vector machine (SVM) is a classifier that is widely 

used owing to its ability to solve nonlinear classification 

problems with small samples and high dimensions (Camps, 

2005). The SVM classifier is typically constructed based on a 

small number of training instance–label pairs, which are used to 

search for the support vectors and then to predict unknown data. 

For a two-class problem, it can be assumed that the training 

instance–label pairs are {(xi,yi),i=1,…,N}. Each training 

instance–labelled pair (xi,yi) is a vector in the d-dimensional 

feature space xi = [xi,1, xi,2,…, xi,d]T with a corresponding label yi. 

The decision function in the kernel space can be expressed as 

follows:  

 
S

iii bxxKyaxf ),()(           （7） 

where )(xf  represents the margins. S = {i:0 < ai < C}, where 

C is a penalty parameter. Samples associated with nonzero ai are 

so-called support vectors. b is a bias term that has low effect on 

the performance. ),( xxK i
 is the kernel function; in the present 

study, a Gaussian RBF kernel was employed. This kernel took 

the following form: 
2

e),(
xx
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where   is a parameter that is inversely proportional to the 

width of the Gaussian kernel. The two parameters C and   

were not known beforehand, but grid-search and cross-validation 

methods were used to search for the best parameters (Bazi, 2006). 

Subsequently, the training instance–label pairs are used to 

confirm the support vectors. 

1500 ship slice image and 1500 non-ship slice images are 

selected as the patterns. The patterns are divided into 3 subsets 

with equal size. One subset is used to test the classifier trained by 

the other two subsets. After the grid search conducting using 3-

fold cross-validation, the best values of the two parameters are 

identified. Then, the classifier for ship discrimination is finally 

built. 

 

3. EXPERIMENTAL RESULTS 

The proposed approach is verified using a series of C-band 

Sentinl1A data on interferometric wide swath mode with a swath 

width of 250 km and a ground resolution of 5m  20m (range 
azimuth). This mode images in three sub-swaths using the terrain 

observation with progressive scans SAR. With this technique, the 

radar beam scans back and forth three times within a single swath, 

resulting in a higher quality and homogeneous image throughout 

the swath. These data were acquired respectively on March 26, 

2016, April 26, 2016, June 30, 2016, and July 24, 2016 

respectively, around the coastal area of Fujian, China. The 

images were processed using the SARScape software. Firstly, the 

metadata files of Sentinl1A data are imported into the software 

to generate the SLC mosaic images. The SLC images are 

multilooked four times in range direction so that the spatial 

resolution are reduced to 20m  20m (range   azimuth). Then, 

geocoding are conducted with the ASTER GEDM V2 product 

and the backscattering coefficient images are projected onto the 

DEM coordinate system. Finally, the images are sliced into 

image blocks of size 1440  1200. 

 

The sliding window with size of 6×6 is employed for water 

extraction and the sliding step is set to three. Uniformity 

threshold of the pixels in the window is set to be 95%, which 

means that the numbers of the pixels with the scattering intensity 
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(a)                                   (b)                                   (c) 

Fig.6 Land and sea separation. (a)SAR backscattering coefficient image, (b) water pixels extraction results, (c) land and sea 

separation results. 

 

 
(a)                                                     (b) 

Fig.7 Experimental results. (a)Ship areas proposal results, (b)ship detection results. 

 

 

larger than the threshold should be less than one. Connected 

domain was built by the pixels labelled as water, and pixels in the 

connected domain should be labeled at least 2 times averagely, to 

be finally determined as water areas, the results is shown in Fig. 

6b. Then, water connected domain with total pixel number less 

than 17200 (1% of the sliced image) are merged into the land 

region, and the remaining regions are assumed to be ocean scene 

region, as is shown in Fig. 6c.The binary image are generated 

according to the water extraction results, and the non-water 

connection region is achieved. The ship proposal areas are 

selected from non-water connection region with total pixel 

number less than 4000, as is shown in Fig. 7a. After achieving 

the ship proposal areas, standard deviation of GLMC energy and 

entropy are calculated for each area, then the pre-trained SVM 

classifier is utilized to classify the areas into ship and no-ship, the 

results is shown as Fig. 7b. 

The ship areas proposal and ship discrimination results were 

validated with google map data, considering the google map 

labeled results (land areas, islands and reefs, marine farms, etc.) 

as the “ground truth”. The accuracy calculation formula of ship 

areas proposal and ship detection, respectively, expressed as the 

division of the number of proposal offshore ships and the total 

number of offshore ships, and the division of the number of 

extracted offshore ships and the total number of offshore ships. 

The total accuracy of ship areas proposal is found to be 99.3%, 
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and the accuracy of ship detection is found to be 96.4% for the 

selected four images. 

 

The results indicate that the method provides an effective means 

for ship discrimination by weaken the influences of land area and 

non-ship targets at sea. Furthermore, the accuracy and false alarm 

rate are obviously superior to those achieved by the typical 

constant false alarm rate (CFAR) algorithm (88.5% and 11.5%, 

respectively). However, as is shown in Fig. 7, ships anchored at 

ports or close to the shore are not discriminated by using the 

proposed method, this is because the ships have being merged 

into the land area in the section of connected domain constructing. 

Nevertheless, this method has been shown to be useful for 

identification of offshore ships. 

 

4. CONCLUSIONS 

In this study, a novel approach based on water extraction and 

SVM was presented for ship discrimination by using HRWS 

SAR data. In particular, an adaptive sliding window was 

developed to extract water pixels and then to propose the ship 

areas based on the analysis of SAR backscattering intensity 

images of different marine scenes, and a SVM classifier is built 

based on the GLCM texture features to classify the proposed ship 

slice images into ships and non-ships. This newly developed 

method achieved the accuracy of 99.3% for ship areas proposal 

and accuracy of 96.4% for ship discrimination, offering 

significant improvement over the typical constant false alarm rate 

algorithm. In addition, all parameters of the algorithm were 

extracted on the basis of the acquired SAR data, and required no 

geographical based map or empirical parameters. However, ships 

close to shore were usually merged into the land area in the 

process of water area extraction. Accordingly, future work should 

be focus on the discrimination of the ships close to shore. 
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