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ABSTRACT: 

 

The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an 

algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, 

we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established 

to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, 

namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively 

explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a 

ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the 

ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the 

proposed algorithm can extract man-made objects with high recognition rate and low omission rate. 1 
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1. INTRODUCTION 

The automatic extraction of man-made objects, such as 

buildings, roads and bridges, from remote sensing images is one 

of the fundamental but challenging tasks in remote sensing and 

computer vision. It has been applied in many applications, 

including urban planning (Hinz and Baumgartner, 2003), 

disaster evaluation (Turker and Sumer, 2008), change detection 

(Ji and Yuan, 2007) and map updating (Florczyk et al., 2016). 

In recent decades, remote sensing images have been widely 

used in man-made object extraction. However, it is still difficult 

to recognize targets from the images with complex structures 

completely. 

 

State-of-the-art algorithms for man-made object extraction can 

be divided into two categories: feature-based and model-based 

algorithms. Many existing studies have utilized feature-based 

algorithms, which focus on the low-level visual features of 

images. Levitt and Aghdasi (1997) used texture features and 

introduced the homogeneous operator. However, this operator is 

unsuitable for regions with heterogeneous man-made objects. In 

the method developed by Wang and Yang (2010), extraction is 

accomplished by analysing morphological features. On the basis 

of human visual attention mechanism, Cai et al. (2011) utilized 

texture and geometric structure features to extract targets. In the 

process of extraction, feature-based algorithms directly focus on 

the image feature to be extracted instead of the category of the 

target. Consequently, these methods have extensive 

applicability to both single-object and complex scenes.  

 

Although feature-based algorithms have gained considerable 

success, they are still far from satisfactory because of low-level 

knowledge, which results in the process of segmentation and 

target extraction blindly. On the basis of knowledge rules, 

model-based algorithms analyse the characteristics of the target 

in the image to facilitate the process of segmentation. Li et al. 

(2000) utilized a 2D hidden Markov model and estimated the 

values of the relevant parameters by an EM algorithm. Reno 

and Booth (1999) extracted man-made objects by using a 

viewer-centred reference model with a deformable template on 

the basis of combining model and image information. 

Model-based algorithms present high pertinence and efficiency, 

thereby avoiding extracting numerous unnecessary features in 

the image. However, once the target has changed, the 

corresponding knowledge rules have to be changed; thus, 

model-based algorithms are less versatile. In addition, targets 

can be extracted by deep learning algorithms (Makantasis et al., 

2015), which usually requires labeled samples for training the 

deep neural network. 

 

The algorithm proposed in this paper is a feature-based 

algorithm. We have observed that man-made objects often 

present symmetric appearances as well as high contrast with 

adjacent land cover types. Thus, we utilize these cues in this 

work to extract a priori value of man-made objects from remote 

sensing images, and optimize it on the basis of multiple features 

to obtain the final result. We model man-made object detection 

as a manifold ranking problem with a graph, in which each node 

is a superpixel. The proposed approach consists of two stages. 

Figure 1 shows the main stages of the extraction algorithm for 

man-made objects. In the first stage, a contrast prior is extracted 

using the entropy of the histogram and genetic quantum 

algorithm. Meanwhile, the images are divided into superpixels, 

and whether a superpixel is a symmetric part is determined by 
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machine learning to obtain a symmetry prior. These two prior 

images are then integrated to generate a man-made object priori 

map, from which initial seeds are generated for the manifold 

ranking algorithm. In the second stage, the seeds from the first 

stage are taken as the man-made object queries, and the 

graph-based manifold ranking algorithm is used to optimize the 

prior priori map. The graph is constructed using superpixels, 

and the colour, texture and main direction features are modelled 

in the graph. The probability of each node being a part of a 

man-made object is computed on the basis of its relevance to 

the a priori queries. The extensive experiments conducted 

validate the high efficiency of the proposed approach in 

man-made object extraction. 

 

 
Figure 1. Diagram of the proposed model 

  

2. GRAPH-BASED MANIFOLD RANKING  

The graph-based manifold ranking model is a process of 

spreading labels from the given queries to the remaining nodes. 

Essentially, it is a graph-based semi-supervised method. Thus, 

the ranking algorithm aims to construct a weighted graph and 

identify the relevance between unlabelled nodes and queries 

(Yang et al., 2013). 

 

2.1 Manifold ranking 

Manifold ranking, which was first proposed by Zhou et al. 

(2003) for graph labelling, is based on the intrinsic manifold 

structure of data. Given the 

dataset 𝑽 = {𝑣1, 𝑣2, … , 𝑣𝑝, 𝑣𝑝+1, … , 𝑣𝑛} ∈ 𝑅𝑚×𝑛 , the first 𝑝 

points are the labelled queries, whereas the rest of the points 

need to be ranked. Let 𝒔 ∶ 𝑽 → 𝑅𝑛 be the ranking function 

that specifies the ranking score of each point. The vectors 𝒔 =
[𝑠, 𝑠2, … , 𝑠𝑛]𝑇  and 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇  are defined as the 

ranked and labelled vectors respectively. If 𝑣𝑖 is a query, then 

𝑦𝑖 = 1; otherwise, 𝑦𝑖 = 0. Next, a graph 𝐺 = (𝑉, 𝐸, 𝑊), where 

the edge 𝐸 is weighted by the affinity matrix 𝐖 = 𝑤𝑖𝑗𝑛×𝑛
, is 

defined. The degree matrix D= diag{𝑑11, 𝑑22, … , 𝑑𝑛𝑛}, where 

𝑑𝑖𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 , can be obtained on the basis of the affinity 

matrix. The ranking model can be represented by the following 

cost function: 

  

O(𝒔) = ∑ 𝑤𝑖𝑗
𝑛
𝑖,𝑗=1 ∥

1

√𝑑𝑖𝑖
𝑠𝑖 −

1

√𝑑𝑗𝑗
𝑠𝑗 ∥2+ 𝜇 ∑ ∥ 𝑠𝑖 − 𝑦𝑖 ∥2𝑛

𝑖=1  (1) 

 

where 𝜇 is the parameter that controls the balance between the 

smoothness and the fitting constraints. That is, nearby points are 

likely to have the same label, but the points should not deviate 

considerably from the original label. The final ranking score 𝒔∗ 

can be obtained by solving the following optimization problem: 

 

                                        s∗ = arg mins O(s)                  (2) 

 

To get the minimum value, the derivative of the function can be 

set to zero. After deduction, the ranking function can be written 

as 

 

          𝒔∗ = 𝐀𝒚                  (3) 

 

where 

 

         𝐀 = (𝐃 −
1

1+𝜇
𝐖)−1            (4) 

 

2.2 Graph construction 

A superpixel contains extensive feature information, and it can 

reduce computation; thus, the image is initially over-segmented 

by the SLIC algorithm (Achanta et al., 2010). Consequently, a 

set of superpixels, which are the nodes in the graph, are 

generated. Multiple features are utilized to describe the 

region/superpixel 𝑖 completely: 

 

       𝒗𝑖 = [𝐿𝑖 , 𝐴𝑖 , 𝐵𝑖 , 𝐺𝑖 , 𝑃𝑖 , 𝐷𝑖]           (5) 

 

where (𝐿𝑖 , 𝐴𝑖 , 𝐵𝑖) is the average value of superpixel colour in 

the LAB colour space, 𝐺𝑖  and 𝑃𝑖  are the average texture 

information (Gabor and LBP operators are used in the 

experiment) and 𝐷𝑖 is the main direction of the gradient in a 

region.  

 

As mentioned in Section 2.1, the graph 𝐺 = (𝑉, 𝐸, 𝑊), where 

𝑉  is the set of nodes and 𝐸  is a set of undirected edges 

weighted by the affinity matrix 𝐖 = 𝑤𝑖𝑗𝑛×𝑛
, is constructed. 

The weight between the two adjacent nodes in the graph is 

defined as 

 

          𝑤𝑖𝑗 = exp (
−∥𝑣𝑖−𝑣𝑗∥2

2𝜎2
)            (6) 

 

In this work, 𝜎2 is a constant that controls the strength of the 

value. The weights are computed using a variety of features as it 

has been shown to be effective in man-made object detection. 

 

3. MAN-MADE OBJECT EXTRACTION 

The proposed two-stage scheme is based on the graph-based 

manifold ranking model. As mentioned in Section 1, a priori 

map of the man-made object should be obtained from which 

object queries for optimization are generated. 

 

3.1 Extraction of the priori map  

The geometric structures and appearances of man-made objects 

are obvious; thus, the symmetry and contrast features are used 

to extract the object region automatically. 

 

Traditional symmetry detection algorithms use maximal discs 

(Blum, 1967) to determine the locus of a symmetric target. In 

the current study, superpixels at multiple scales are adopted as 

deformable maximal disc hypotheses (Levinshtein et al., 2013). 

A superpixel that represents a good maximal disc hypothesis 

should conform to two key forms of perceptual grouping. The 

first is homogeneity; a superpixel region should present 

continuity in its appearance. The second is symmetry; the 

maximal disc bitangency can be replaced by two opposing parts 

of the boundary of a superpixel. If the superpixels are 

segmented too finely or too coarsely, then the opposing 

boundary cannot successfully capture a symmetric part. Thus, 
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superpixels should be generated at different scales (figure 2(b)) 

by using the normalized cuts algorithm (Shi and Malik, 2000) to 

ensure that a superpixel represents a good maximal disc 

hypothesis. Consequently, an affinity between two adjacent 

superpixels at a given scale is established. The affinity matrix 

𝐀(i, j)  has two elements, namely 𝐀𝑠ℎ𝑎𝑝𝑒  and 𝐀𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 . 

The former determines whether the distribution of the adjacent 

edges of the superpixels fits the actual boundary via SVM 

classifier, and the latter verifies the homogeneity of the 

intervening region. Finally, the shape and appearance affinities 

are combined using a logistic regressor, and the edge weight 

𝑤(i, j) =
1

𝐀(𝑖,𝑗)
 is acquired. Agglomerative clustering 

(Felzenszwalb and Huttenlocher, 2000) based on the resulting 

graph is utilized, and we obtain the symmetric parts (figure 2(c)) 

in the image. 

 

    
(a)  (b)  (c)  (d) 

Figure 2. Steps of multiscale symmetric part detection: (a) 

original image, (b) multiscale superpixel segmentation, (c) 

symmetric part extraction at all scales and (d) generated 

symmetry prior. 

 

Concerning the contrast feature of man-made object, target 

extraction is considered as a foreground segmentation problem, 

where the man-made object is regarded as the foreground region. 

The method proposed by Kapur et al. (1980), referred to as the 

KSW entropy method in the current paper, has achieved 

excellent results in solving image segmentation problems. 

However, it presents high computational overhead during for 

the determination an adaptive threshold. Therefore, the KSW 

entropy method based on quantum genetic algorithm (Gou, 

2008) is applied in the current study to enhance computational 

efficiency and reduce the search time for the optimal threshold, 

with the goal of rapid extraction. In the KSW entropy method, 

the images are processed in greyscale, and the information 

distributed in the foreground and background of the 

experimental image is enabled to reach the maximum by using 

the entropy measurement of the grey histogram to determine the 

segmentation threshold automatically. As an optimization 

algorithm, the quantum genetic algorithm introduces the 

quantum coding form into chromosome encoding. By utilizing 

the inherent superposition, coherence and other characteristics 

of the quantum state, quantum genetic algorithm can represent 

multiple possible linear superposition states. Furthermore, 

quantum genetic algorithm exhibits rapid convergence and 

powerful global search capability in solving optimization 

problems because of quantum parallelism. Therefore, quantum 

genetic algorithm is combined with the KSW entropy method in 

the present study to enable the segmentation algorithm to global 

search, thus to find out the optimal segmentation threshold soon. 

After computing a priori value of symmetry and contrast, we 

obtain the final priori of man-made object for optimization. 

 

We note that only depending on the contrast priori, some 

shadows and low-contrast areas may not be accurately detected 

as shown in figure 3(b). The multiscale symmetric part 

extraction, which focuses on the entire object, can reduce the 

effects of imprecise contrast queries (figure 3(c)). Therefore, the 

use of a fusion prior can facilitate the integral extraction of 

objects. However, some natural cover types (mainly vegetation) 

are inevitably divided into symmetric parts. To decrease 

misjudgement rate, a vegetation mask by correlation between 

bands is utilized, and the final fusion prior is obtained (figure 

3(d)). 

 

    
(a)  (b)  (c)  (d) 

Figure 3. Man-made object extraction results using different 

queries: (a) original image, (b) result after using contrast prior 

as queries, (c) result of using symmetry prior as queries and (d) 

result of using fusion prior as queries. 

 

3.2 Ranking with priori queries 

Contrast and symmetry features, which facilitate the selection of 

the nodes of the priors as queries, are used to obtain the prior of 

the man-made object. The indicator vector 𝒚 can be formed 

after the queries are obtained. When the superpixel 𝑖 in the  

priori image is a part of the man-made object, then 𝑦𝑖 = 1; 

otherwise, 𝑦𝑖 = 1. 

 

A graph is constructed by connecting the adjacent superpixels 

generated by the SLIC algorithm. Since each node’s property 

and appearance have a close correlation with the neighbouring 

nodes, superpixels are utilized as the nodes of the graph not 

only to reduce computation but also to consider the spatial 

correlation. Multiple features, namely the colour, texture and 

the main direction of the region, are integrated to describe a 

superpixel adequately. Using these features, the affinity matrix 

𝐖, which reflects the similarity between adjacent nodes, can be 

derived using equation (6). In particular, most of the elements 

of the matrix 𝐖 are zero because of the sparsely connected 

graph. On the basis of the indicator vector 𝒚 and affinity 

matrix 𝐖, the final ranking map is derived by 

 

𝑉(𝑖) = �̅�∗(𝑖)        𝑖 = 1,2,3, …,           (7) 

 

where 𝑖 denotes the nodes on the graph and 𝑉(𝑖) represents 

the normalized ranking score. Finally, the extraction result of 

the man-made objects is acquired using a fixed threshold. 

 

4. MAN-MADE OBJECT EXTRACTION 

The extraction algorithm of man-made objects is tested using 20 

remote sensing images. Our approach is evaluated and 

compared with the MRF model (Zong et al., 2015) and active 

contour approach (Wang et al., 2009). Our approach involves 

two parameters, namely 𝜇, which controls the balance between 

the smoothness and fitting constraints in the optimization 

function, and the constant 𝜎2 for the affinity matrix 𝐖. After 

conducting extensive experiments, we set 𝜇 = 0.7  and 

𝜎2 = 0.5 for the optimal results. 

 

Figure 4 shows the detection results for an aerial image with 0.1 

m resolution. Figures 4(b) and (c) show the a priori extraction 

result of the man-made object by using the symmetry and 

contrast features respectively. These results are integrated into a 

final priori result, which is shown in figure 4(d). After manifold 

ranking, the extraction results are obtained and shown in figures 

4(e) and (f). The man-made objects detected by the MRF model 

and active contour approach are shown in figures 4(g) and (h) 
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for comparison. Clearly, the structures of the man-made objects 

in figure 4(a) are complex, and the shadows increase the 

difficulty of extraction. Nevertheless, our proposed approach 

can extract the areas more accurately than the two other 

approaches can, avoiding the effect of the shadows and texture 

noise. The results of the two existing approaches (figures 4(g) 

and (h)) present several insignificant and complex structure 

areas merged with the background. 

 

Figure 5 shows the extraction results for an example (0.1 m 

resolution) from the remote sensing image dataset (UCMerced 

LandUse Dataset). The results of the proposed approach and the 

two other compared algorithms are roughly similar. However, 

some differences can still be observed in the regions enclosed in 

yellow frames. The highlighted regions are covered with 

buildings. In these regions, the contrast cues are similar to the 

background. Consequently, the results of the MRF and active 

contour approaches in figures 5(g) and (h) exhibit high fall-out 

ratios. By contrast, the result of our approach (figure 5(f)) 

shows that nearly all the man-made areas are properly detected. 

We utilize several characteristics and adjacency relation to 

reduce the rate of fault detection. 

 

    
(a)  (b)  (c)  (d) 

    
(e) (f)  (g)  (h) 

Figure 4. Man-made object extraction results for an aerial image: 

(a) original image, (b, c) a priori extraction results with 

symmetry and contrast features respectively, (d) a priori 

extraction result after fusion, (e, f) results of our method and 

binary image, (g) result obtained using the MRF algorithm by 

Zong et al. (2015) method, (h) result obtained using the active 

contour approach by Wang et al. (2009). 

 

    
(a)  (b)  (c)  (d) 

    
(e) (f)  (g)  (h) 

Figure 5. Man-made object extraction results for an aerial image: 

(a) original image, (b, c) a priori extraction results with 

symmetry and contrast features respectively, (d) a priori 

extraction result after fusion, (e, f) results of our method and 

binary image, (g) result obtained using the MRF algorithm by 

Zong et al. (2015) method, (h) result obtained using the active 

contour approach by Wang et al. (2009). 

 

Figure 6 presents the results for RGB images of different scenes. 

These images are taken from different regions; thus, the 

appearances of the man-made objects are diverse which 

obviously increase the difficulty of detection. Furthermore, the 

object types in these images include freeways, intersections, 

mobile home parks, tennis courts and buildings. Nevertheless, 

the results demonstrate that our approach performs fairly well 

for complex images. 

 

   
   

   
   

   
   

   
   

   
   

   
(a)  (b)  (c)  

Figure 6. Man-made object extraction results for UCMerced 

LandUse dataset: (a) original images, (b) ground-truth images 

and (c) results of our method. 

 

Following the method used by Achanta et al. (2009), we 

quantitatively evaluate the performance of our method in terms 

of precision, recall and F-measure. The precision value 

indicates the ratio of correctly assigned pixels that belong to 

man-made objects to all the pixels in the extraction area, and 

recall value is the proportion of the detected target pixels with 

respect to ground-truth number. After the extraction result is 

binarized using thresholds ranging from 0 to 255, the precision–

recall curve can be acquired. Figure 7(a) shows the ranking 

results obtained using different features. Figure 7(b) presents 

the effects of the contrast and symmetry priors and indicates 

that using the fusion prior as queries outperforms using a single 

prior. F-measure is used to evaluate the performance of our 

algorithm and those of the two other approaches further. 

F-measure is computed using the weighted harmonic of 

precision and recall. 

 

            𝐹𝛽 =
(1+𝛽)Precision×Recall

𝛽Precision+Recall
           (8) 

 

where 𝛽 = 0.3 according to Yang et al. (2013). Figure 7(c) 

demonstrates the precision, recall and F-measure values of the 
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three compared methods using the 20 test images. The chart 

shows that their precision values are approximate; however, our 

approach achieves the highest recall and F-measure values. 

Overall, the proposed algorithm is superior to the two other 

existing methods. 

 

   

(a)  (b)  (c)  

Figure 7. Precision–recall curves: (a) with different features and 

(b) with different priors, (c) overall precision, recall and 

F-measure values of the compared methods on 20 test images. 

 

Finally, the formulas proposed by Lin and Nevatia (1998) for 

branch factor (BF) and detection percentage (DP) are used to 

compute the detection performance quantitatively. BF describes 

the ratio of incorrectly detected objects, and DP reflects the 

number of man-made objects in the image detected by the 

extraction algorithm. The objective is to maximize the DP and 

minimize the BF simultaneously. 

 

 BF =  
FP

TP
                  (9) 

 

 DP =
100TP

TP+FN
                (10) 

 

where TP denotes the true positive or the number of man-made 

objects detected manually and automatically, FP represents the 

false positive or the number of false alarms and FN denotes the 

false negative or the number of undetected man-made objects. 

 

The proposed method is evaluated on 20 test images in terms of 

BF and DP. The overall BF of the proposed method is 0.068, 

and its DP is 94.8%. These results are better than those of the 

methods by Zong et al. (2015) (i.e. BF, 0.095; DP, 73.7%) and 

Wang et al. (2009) (i.e. BF, 0.133; DP, 75.4%). 

 

5. CONCLUSION 

We have proposed a top-down approach to extract man-made 

objects from remote sensing images automatically by manifold 

ranking using a graph, which integrates colour, texture and 

main direction cues. As a kind of optimization algorithm, 

symmetry and contrast features are considered to obtain a priori 

value. We have evaluated the proposed algorithm on 20 remote 

sensing images. The proposed approach has presented decent 

overall quality. In our future work, we intend to use the more 

characteristics of man-made objects and develop an improved 

method for fusion of multiple features. 
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