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ABSTRACT: 
 
Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put 
forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and 
reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm 
based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a 
mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a 
separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to 
calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point 
belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger 
likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The 
proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method 
can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by 
the ISPRS for the test. The proposed algorithm can obtain a 4.48% total error which is much lower than most of the eight classical 
filtering algorithms reported by the ISPRS. 
 
 

∗ Corresponding author 

1. INTRODUCTION 

Airborne Light Detection and Ranging (LiDAR) has been 
developing very fast in the past decades. Comparing with 
traditional remote sensing means, airborne LiDAR owns the 
strength of high efficiency in collecting geographic information 
of large areas (Liu, 2008; Meng et al., 2010). Moreover, 
weather conditions have no influence on this technique when 
gathering point clouds (Vosselman and Maas, 2010). Thus, 
airborne LiDAR has been widely used in many areas, such as 
digital terrain model (DTM) extraction (Li et al., 2017; Ozcan 
and Unsalan, 2016), three-dimensional model generation (Yang 
et al., 2017; Zhou and Zhou, 2014), forest parameter estimation 
(Hyypp et al., 2012; Vega et al., 2016), etc.  
 
Although airborne LiDAR is cost-effective when acquiring 
three-dimensional information, it takes up a lot of time in 
processing point cloud data, especially in manual classification. 
It has been established that the manual classification and quality 
control consume an estimated 60–80% of processing time 
(Flood, 2001). Consequently, it is urgent to develop algorithms 
to speed up point clouds post-processing efficiency.  
 
To develop algorithms for many other applications, one 
fundamental step is to extract DTM information from point 
clouds that contain both ground points and non-ground points. 
This process is generally known as filtering. Aiming at realizing 
filtering effectively, lots of algorithms have been put forward in 
the past twenty years. These algorithms can be categorized into 
four classes, namely slope-based (Vosselman, 2000) (Sampath, 

2005; Sithole, 2001; Susaki, 2012), morphology-based, 
interpolation-based (Chen et al., 2007; Hui et al., 2016; Hui et 
al., 2017; Li et al., 2013; Li et al., 2014; Mongus et al., 2014; 
Pingel et al., 2013), and segmentation-based (Tóvári and Pfeifer, 
2005) (Lin and Zhang, 2014) (Chen et al., 2016). Although 
these algorithms in the literature can obtain a good performance, 
most of them suffer from parameters setting or thresholds 
adjusting. Obviously, it is inconvenient for inexperienced staff. 
Moreover, many parameters setting or thresholds adjusting is 
always time-consuming and reduces the degree of automation 
of the algorithm. To overcome this problem, this paper 
proposed a threshold-free filtering algorithm based on 
expectation-maximization.    
 

2. METHODOLOGY 

According to central limit theorem, naturally measured sample 
data will lead to a normal distribution. Conversely, due to the 
complex terrain environments point clouds can be assumed as a 
mixture of Gaussian models. Therefore, the separation of 
ground points and non-ground points from point clouds can be 
seen as a separation of a mixed Gaussian model.  
 
Expectation-maximization (EM) is applied for realizing the 
separation. EM is an approach for fitting probability 
distributions and can calculate maximum likelihood estimates 
of parameters to probabilistic models being fit to data. When we 
do not know which component (ground or object) the point 
belonging to, EM can be used to calculate maximum likelihood 
estimates of the mixture parameters. Using the estimated 
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parameters the likelihoods of each point belonging to ground or 
object can be computed. It is obvious that the point is labelled 
as the class corresponding to the maximum likelihood. The 
detailed procedure of the proposed algorithm comprises three 
steps as presented in Sections 2.1 to 2.3, respectively: 
 
2.1 Point Clouds Denoising 

Due to the influence of external environments or the laser 
rangefinder malfunction, the acquired point clouds always 
contain noisy points, including high outliers and low outliers. 
Both of these two outliers may disturb the assumed normal 
distribution; especially the low outliers may have a great 
influence on the final filtering results. Hence, the outliers 
should firstly be removed. 
 
To realize denoising, the point clouds are first organized using 
k-dimension tree. A point is eliminated if its elevation value 
changes greatly before and after morphological opening 
operation among its k neighbors. 
 
The morphological opening operation is achieved by 
performing an erosion of the dataset followed by a dilation 
given as Equation (1): 
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where  , ,i i ix y z  = coordinates of p  point’s neighbors 
 pE   is morphological erosion operation 

pD  is morphological dilation operation 

pO  is morphological opening operation 
 
Points are selected as outliers if their elevation changes greater 
than the threshold that can be calculated automatically 
according to Equation (2): 
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where  thZ   = threshold for detecting outliers 
 stdZ   = standard deviation of the neighbors 

meanZ   = mean elevation of the neighbors  

kZ   = elevation of the k -th point 
 
2.2 Ground Points Extraction Using EM 

To realize the filtering, the posterior probability of a point p   
belonging to ground points ( G ) should be calculated. It can be 
determined according to Equation (3): 
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where  ( )P p  = ( ) ( )P p G P G∑   

                ( )P G   is the prior probability of ground points 
 
It is obvious that p  will be labelled as a ground point if 

( )P G p  is greater than 0.5. Since we assume that two classes 
namely ground points and object points form the mixed 
Gaussian models, it is easy to set ( )P G  to be 0.5. Thus, to 
obtain the posterior probability of a point belonging to ground 
points, we need to calculate the class-conditional density 
( )P p G  given as Equation (4), which can be estimated using 

EM algorithm. 
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where  jP  is the mixing probability 

               ( )G   is the Gaussian equation with parameters jµ  

and jδ  , which are mean and standard deviation of elevations. 
 
EM algorithm is a general method for fitting probability 
distributions that mainly includes the following four steps 
(Dempster et al., 1977): 
 
ⅰInitializing mixture parameters to random values. 
 
ⅱ'E' step: computing membership probabilities. 
 

ⅲ'M' step: updating mixture component parameters. 
 

ⅳChecking for convergence. If not, repeating steps ⅱand ⅲ. 
 
EM algorithm keep iterating until it reaches convergence. 
Meanwhile, the posterior probability of a point p  belonging to 
ground points or object points is obtained. Obviously, p  is 
classified as the class with larger posterior probability. 
According to the binary classification results filtering outcome 
can be achieved. 
 
2.3 Optimization Using Intensity Information 

Nowadays, most airborne LiDAR systems provide intensity 
information which can help to optimize the filtering results 
obtained at Section 2.2. Owing to the characteristic that same 
materials have similar reflection intensities, the error-
classifying points obtained by the EM method can be revised 
according to intensity information. Since point clouds are 
organized using k-dimension tree at Section 2.1, it is easy to 
find the k nearest neighbors of one point. If one point’s intensity 
value is greatly different from that of its neighbors, we can infer 
that this point is wrongly classified. Meanwhile, the 
corresponding label should be modified. 
 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

The proposed algorithm was tested using two datasets used in 
practice. The first dataset (Sample1) was acquired using an 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-607-2018 | © Authors 2018. CC BY 4.0 License.

 
608



Optech ALTM scanner from the city of Jingmen in China with 
an area of 1.20 km2 and 984,998 points cloud data in total. The 
second dataset (Sample2) was located within the city of 
Luoding, China, characterized by modern architecture with low 
and high-storey buildings. Both of these two datasets contain X, 
Y, Z coordinates and intensity information. Figures 1 and 2 are 
intensity images of the two areas. It can be found that these two 
areas contain different terrain features. 
 

 
Figure 1. Intensity image of the first dataset 

 

 
Figure 2. Intensity image of the second dataset 

 
Three indicators namely TypeⅠerror, TypeⅡerror and Total 
error are applied for accessing the performance of the proposed 
method. Type Ⅰ error is referred to as the percentage of 
rejecting ground points as object points, while TypeⅡerror 
denotes the percentage of accepting object points as ground 
points. Total error is the percentage of all the misclassifying 
points. The three indicators are defined in Equation (5): 
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where  a   = the count of correctly classified ground points 
 b   = the count of incorrectly classified ground points 
 c   = the count of incorrectly classified object points 
 d   = the count of correctly classified object points 
 
To test the effect of intensity information on the filtering, this 
paper compared the performance before and after using the 
intensity data. The comparison results are shown in Figure 3. It 
can be found that both the performances of Sample1 and 
Sample2 are improved by applying the intensity information to 

the filtering results in terms of total error. It is because the 
intensity data commonly provides more semantic information 
which will help revise the filtering results. Conversely, the 
TypeⅠerror of Sample1 turns a little larger after using the 
intensity information. This can be explained that there are many 
different natural objects and water areas in Sample1. These 
complex objects or areas are easy to generate intensity noise, 
which will affect the filtering results. 
 

 
Figure 3. Performance comparison results 

 

In order to more objectively evaluate the filtering accuracy of 
the proposed method, this paper selected one sample data 
(sample_21) provided by the ISPRS and compared its total error 
with the one of other eight classical filtering algorithms tested 
by the ISPRS (Sithole and Vosselman, 2004) as shown in 
Figure 4. Sample_21 was selected since it contains some special 
features, including roads with bridges, data gaps, vegetation, 
etc., which constitute filtering challenges. From Figure 4, it can 
be found that the total error of the proposed method is only 
slightly higher than that of the methods proposed by Axelsson 
and Pfeifer. Considering that both of these two methods involve 
complex parameters setting, the proposed method owns great 
advantages in automation. 
 

 
Figure 4. Total error comparison 

 

4. CONCLUSION 

Point cloud filtering is a necessary step in the point cloud 
processing, analysis and applications. To break through the 
limitation of complex parameter settings for the existing 
filtering algorithms, this paper proposed a threshold-free 
filtering algorithm based on expectation-maximization. In this 
paper, the filtering is seen as a separation of mixed Gaussian 
models. By applying EM algorithm to elevations of point 
clouds, ground points can be extracted automatically. Intensity 
information is also adopted for refining the filtering outcomes. 
Experimental results show that the proposed method can 
achieve a good performance without complex parameters 
setting or thresholds adjusting. Furthermore, the filtering 
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performance is little affected by the format and resolution of the 
airborne LiDAR data. Therefore, the proposed method can 
provide a good foundation for the post-processing of airborne 
LiDAR point clouds. 
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