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ABSTRACT: 
 
Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the 
world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more 
than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form 
to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized 
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, 
having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to 
supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop 
area was compared with reported area collected by field census.  Results reveal that combined dataset (NDVI*LAI) performs better in 
mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of  34.55, 16.84, 20.58 and 
mean absolute percentage error (MAPE) of 24.56%, 36.82%, 30.21% for wheat, rice and cotton crop respectively. For sugarcane crop 
mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58%, as compared to NDVI (10.08, 40.53%) and 
NDVI*LAI (10.83, 39.45%). The availability of major crop rotation statistics provides insight to develop better strategies for land, 
water and nutrient accounting frameworks to improve agriculture productivity. 
 
 

1. INTRODUCTION 
 
Crop rotation is the growth of different crops in successive 
seasons of a year (Panigrahy and Sharma, 1997). Information on 
spatial distribution of different crop rotations helps managers to 
perform different agriculture functions such as water/nutrient 
supply, crop production estimation, revenue generation in an 
effective way (Jones et al., 2017; Bégué et al., 2018). It optimizes 
the modeling of energy fluxes for food security and climate 
change studies in different agro-ecosystems (See et al., 2015; 
Leng and Huang, 2017). Accurate crop area is also the backbone 
of agriculture statistics. Pakistan being an agricultural country 
depends heavily on reliable and timely crop statistics for its food 
and economic policies. Complete enumeration and sample 
survey are the two traditional methods to generate crop area 
statistics (FAO, 1982). Complete survey is expensive and time 
consuming whereas sample survey is timely and cost effective. 
Nevertheless, sampling design and estimation procedure is very 
critical in sampling method (Cotter and Nealon, 1987; FAO, 
1995). The survey area statistics than compiled at reasonable 
administrative (mostly district) unit. 

Geographic location of different crop rotations and its variation 
within a district is not existed under traditional crop reporting 
system.  This lack of spatial information may result in a less 
effective planning of valuable agriculture resources within a 
district. Advances in satellite remote sensing has proven to be an 
effective tool for crop mapping and made it possible to estimate 
crops area at coarser resolution of one kilometer to finer 
resolution within few meters (Zhou et al., 2013; Jiao et al., 2014; 
Qin et al., 2015; Belgiu and Csillik, 2018). For small study areas, 
high-resolution images are used to identify different crops based 
on supervised classification approach using field signatures 
(Blaschke, 2010; Yang et al, 2011; Huang et al., 2017). This 
approach is time dependent and additional training data is needed 
when applied to other periods (Zhong et al., 2016). Regional 
level crop mapping is done using low spatial but high temporal 
resolution satellite sensors data such as Advanced Very High 

Resolution Radiometer (AVHRR) and Moderate Resolution 
Imaging Spectroradiometer (MODIS) (Gumma et al., 2014; 
Zhang et al., 2015; He et al., 2017). Use of phenology is a key 
component in crop mapping when using multi-temporal images 
(Knight et al., 2006; Geerken, 2009; Zhang et al., 2014). Remote 
sensing based phenology information has widely used for 
biomass monitoring (Xiao et al., 2004; Lewinska et al., 2018), 
farm management (Lobell et al., 2003; Suepa et al., 2016) and 
climate change analysis (Tateishi and Ebata, 2004; Wang et al., 
2017). Vegetation indexes (VIs) are widely used parameters, 
such as normalized difference vegetation index (NDVI) and 
enhanced vegetation index (EVI) to develop phenological 
metrics for crop classification (Wardlow et al., 2007; Wardlow 
and Egbert, 2008; Shao et al., 2010; Yan et al., 2015). Yet, crop 
identification becomes difficult with low-resolution images in 
heterogeneous large regions and its accuracy remains 
questionable (Loveland et al., 2000; Chen et al., 2016). 
Subdivision of different feature clusters based on temporal space 
is also difficult for large regions having more than one cropping 
seasons. This can be minimized by image segmentation (Vintrou 
et al., 2012; He et al., 2017). However, this spatial division is 
time consuming and needs addition information about study area 
(Schultz et al., 2015). Mixing of non-vegetative features (e.g., 
bare soil and built-up) with cropland also hamper the crop area 
estimation if spatial segmentation is not adopted for 
unsupervised cluster identification.  

Leaf area Index (LAI) is another dimensionless physiological 
parameter that characterize the structure of plant canopy (Bréda, 
2008). It is the ratio of leaf area per unit ground surface area 
(Watson, 1947). There are many direct (e.g., allometry, 
harvesting and littering collection) and indirect methods (based 
on radiation transfer through plant canopy) to measure LAI in 
the field (Gower et al., 1999; Bréda, 2003). Plant canopy directly 
linked with spectral reflectance therefore, LAI retrieval from 
remote sensing data has stimulated many research studies in 
recent years (Zheng and Moskal, 2009; He et al., 2016). Positive 
correlation has been reported in many studies between NDVI and 
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LAI (Wang et al., 2005; Maki and Homma, 2014). Most studies 
have related remotely sensed LAI with photosynthesis, 
transpiration, rainfall interception and energy fluxes in context 
of forest cover (Soegaard, 1999; Leuning et al., 2005; Chen et al., 
2007). Wang et al., in 2017 concluded that phenology 
information extracted from LAI performs better than enhanced 
vegetation index (EVI) for croplands and evergreen forest 
regions. However, there is still a gap to evaluate LAI for mapping 
different crop types based on its temporal behavior.  
 
This study aims to evaluate crop rotation mapping in large and 
heterogeneous irrigated area of Indus basin using different 
phenological information. NDVI, LAI and fusion of these two 
datasets are evaluated to map crop rotation in large and diverse 
region. Unsupervised classification is used to identify different 
clusters in the regions based on temporal space without spatial 
segmentation. Different clusters then classified based on curve 
behavior and spatial occurrence. Accuracy of estimated crop area 
is checked against area reported in statistical archives. 

 

 

2. MATERIAL AND METHOD 
 

2.1. Study area 

Study region consists of 48 canal command areas that spread 
over four Provinces (Punjab, Sindh, Khyber Pakhtunkhwa (KPK) 
and Balochistan) of Pakistan. More than 90% irrigated area lies 
under Punjab (33 districts) and Sindh (23 districts) Province. 
Area lies between 24◦05’ to 34◦31’ N latitude and 67◦17’ to 74◦44’ 
E longitudes (Figure 1). The total area of the study region is 
21.08 million hectares (mha). Two cropping seasons, summer 
(kharif) (May – Oct) and winter (rabi) (Nov – April) existed in 
the region. Wheat, rice, cotton and sugarcane are the cash crops 
contributing 2.2%, 0.7%, 1.4% and 0.7% respectively to the 
GDP (Gross Domestic Product) of the country (Usman, 2016). 
Wheat is the main winter crop with barley, oats and gram as 
minor crops. Rice and cotton are main summer crops with maize, 
sorghum, millet and sesamum as minor crops. There is no district 
level data available for minor crops therefore; minor crops 
referred as fodder crops in this study. Sugarcane is an annual 
crop that takes 10-12 months to get mature. Three dominate crop 
rotation, wheat-rice, wheat-cotton and wheat-fodder dominates 
the study region.

 

Figure 1. Geographic location of study area 
 

2.2. Crop area statistics 

In Pakistan, final estimate of area sown under all major crops is 
collected through complete enumeration of all villages by field 
officers of revenue department twice a year (PBS). These 
acreage statistics compile at district level and publish by 
agriculture department in provincial and national statistical 

reports. Area statistics of crop calendar 2010-11 was used for this 
analysis. 

2.3. MODIS data 

Composite data product of Aqua and Terra satellite’s MODIS 
sensor, MOD/MYD13A2 and MCD15A2, was used to get 
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temporal information of NDVI and LAI respectively. Data has a 
spatial resolution of 1000 m with temporal resolution of 8 days. 
Total 46 images complete the crop calendar of 2010-11. LAI 
algorithm adopts radiative transfer approach by utilizing three, 
four or even seven MODIS Reflectance bands and some 
ancillary data on surface characteristics such as land cover type 
to quantify canopy structure (Knyazikhin, 1999). Whereas, 
NDVI is a normalized transform of the NIR to red reflectance 
ratio, designed to standardize vegetation index values between 
−1 and +1 (Didan et al., 2015). 

2.4. Methodology 

Two different phenological datasets NDVI, LAI and one derived 
dataset by multiplying NDVI with LAI (NDVI*LAI) were used 
to identify different crop rotation in study region based on 
temporal behavior of different pixels. Complete year phenology 
response for each dataset was stacked together for further 
analysis. An unsupervised to supervised approach was adopted 
for classification. Unsupervised classification was done using 
Iterative Self-Organizing Data Analysis Technique (ISODATA) 
clustering method to identify different temporal spaces. At first, 
each dataset was divided into two broad classes of vegetative and 
non-vegetative area. Vegetative area was further classified into 
100 unsupervised classes. Temporal values of NDVI, LAI and 
(NDVI*LAI) for each class was extracted using zonal mean 
statistics and plotted against time. To make resulting curves 
smooth, a three period running average was taken so that 
beginning, peak and end of season in each curve could be 
identified easily. Curves with two peaks indicate two cropping 
season. Curves with one peak represent area of single cropping 
season with other season as fallow.  Multiple peak curves 
represent area with fodder cultivation that give multi cuts during 
cultivation period. Curves with one elongated peak represent 
sugarcane crop. Whereas, curves with almost constant temporal 
behavior above the base value represents forest or orchard land 
features. 

 
Figure 2. Flow diagram of methodology. 

As a first step, different curves showing similar phenological 
behavior and occurred at same location were merge together. 
Crop calendar developed by Agriculture Information System 
(AIS) Pakistan was a useful information to design start and end 
of crop season in phenology matrix for different crop rotations 
in the region. Crop calendar can be found here: 
 http://dwms.fao.org/~test/downs/docs/pak_crop_calendar.pdf. 
Seasonal duration and amplitude of phenology response were the 
key to find similar curves of different crop rotation. Supervised 
classification of different clusters were done using phenology 
information and expert knowledge of cropping rotation existed 
in area. After merging, clusters were reduced from 100 to 13, 
depicting different crop rotations. Flowchart of methodology is 
shown in Figure 2.  
After classification, area of major crops in each district were 
computed for three datasets. Estimated area of major crops per 
district was compared with area mentioned in statistical reports. 
Two statistical parameters, root mean square error (RMSE) and 
mean absolute percentage error (MAPE) were used to check the 
classification accuracy. Smaller the value of statistical parameter 
better is the estimation. The RMSE and MAPE can be calculated 
as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝐸𝐸𝑖𝑖−𝐴𝐴𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (1) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 =  1
𝑛𝑛
∑ ��𝐴𝐴𝑖𝑖−𝐸𝐸𝑖𝑖

𝐴𝐴𝑖𝑖
� × 100�𝑛𝑛

𝑖𝑖=1  (2) 

 

Where  𝑅𝑅𝑖𝑖 = crop area estimated from classification 
 𝑀𝑀𝑖𝑖 = actual area in statistical reports  
 𝑛𝑛  = total number of districts. 

 

3. RESULTS AND DISCUSSION 
 

3.1. Crop rotation phenology 

Water availability to crops have significant effect on 
photosynthesis. Water stress conditions would reduce 
chlorophyll levels in plant leaves ultimately effecting 
photosynthesis and leaf development (Sanchez et al., 1983). 
Decrease in chlorophyll fluorescence will reduce NDVI and LAI 
values (Springer et al., 2017). Wheat, rice, cotton and sugarcane 
are cash crops for study area, which not only fulfill food and 
fabric needs but also a major source of economic benefit to 
grower. Therefore, these cash crops are cultivated in suitable 
growing conditions with ample supply of water and nutrient to 
get maximum yield. It is clear from Figure 3 that phenology 
response in all three datasets (NDVI, LAI and NDVI*LAI) for 
cash crops is higher than other minor crops of each season. 

In all datasets, wheat crop has high phenology response than 
other minor crops of rabi season. Rice, Cotton and sugarcane 
curve response is also higher than maize and other kharif fodder 
crops. Cotton crop phenology curve is more elongated than rice 
crop because of longer growth period. Wheat-Rice crop rotation 
has the highest phenology curve response in all three datasets 
followed by Wheat-Cotton (in NDVI) and Fodder-Cotton (in 
LAI and NDVI*LAI). Wheat-Bare crop cycle has unusual high 
curve response in LAI dataset that can be explained by influence 
of adjacent non-vegetative (water/sand) pixels. Wheat-Bare 
rotation is mostly existed in area closer to rivers in flood plains. 
During rabi season, reduced river discharge leaves behind high 
moisture and nutrient soil to be cultivated for only one season. In 
rabi season, for all major crop rotations, wheat crop has 
maximam NDVI, LAI and LAI*NDVI value range of (0.65-
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0.73), (1.51-2.36) and (1.05-1.53) respectively. In Kharif season, 
rice crop has (0.52-0.73) maximum NDVI (1.02-2.21) LAI and 
(0.72-1.64) maximum NDVI*LAI value range. Whereas, cotton 
has maximum value range of (0.67-0.69), (1.47-1.76) and (1.00-

1.23) for NDVI, LAI and NDVI*LAI respectively. Sugarcane 
reach to a maximum value of 0.64, 1.21 and 0.82 for NDVI, LAI 
and NDVI*LAI respectively.

Figure 3. Phenological behavior of different crop rotation using 
NDVI, LAI and NDVI*LAI. 

 

Figure 3. Phenological behavior of different crop rotation using NDVI, LAI and NDVI*LAI.

It is also observed from Figure 3 that phenology response, in all 
datasets, of kharif crops is higher and more close to each other 
that rabi crops. This is because of high soil moisture, by either 
rainfall (monsoon events) or sufficient canal water supply due to 
increase in river flow caused by upstream snow melting. Base 
value before the start of crop growth is high in NDVI phenology 
matrix than in LAI and (NDVI*LAI). This high value is due to 
soil reflectance in NDVI dataset whereas, LAI base value is close 
to zero for non-vegetative area. This high base value leaves less 
value difference between start (tillering stage) and peak (full 
bloom) of phenology curve making curve separability difficult 
in NDVI profiles. On the other hand, curve separability is high 
in LAI and (NDVI*LAI) making crop rotation identification 
much easy. High base value in phenology matrix also makes 
difficult to separate desert shrubs from fodder crops. During 
curve analysis, it was also observed that crop clusters in Punjab 
region have overall high phenological behavior in all three 
datasets. It can be attributed to favorable crop growing 
conditions than other parts of study region. 

3.2. Classification validation 

Comparison of estimated wheat crop area with reported area 
reveals that derived dataset (NDVI*LAI) perform better with 
RMSE of 34.55 and MAPE of 24.56%. While, NDVI and LAI 
achieve RMSE of 38.35 and 35.37 and MAPE of 28.16% and 
24.87% respectively (Figure 4a).  Overall, NDVI and LAI has 
overestimated (↑) the wheat area by 9% and 2% respectively. 
Whereas, NDVI*LAI underestimate (↓) wheat area by 0.2%. 

Average maximum error of 73%↑ and 43%↓ is estimated for 
Qamber Shadatkot and Jacobabad districts respectively. 

Rice crop area comparison of 41 districts is shown in Figure 4b. 
NDVI, LAI and NDVI*LAI has RMSE of 19.84, 20.04 and 
16.84 and MAPE of 43.91%, 47.46% and 36.82% respectively. 
On an average, NDVI*LAI (6%↑) has estimated area more 
accurately than LAI (9%↓) and NDVI (12%↑).  Average 
maximum variation of 58%↑ and 25%↓ crop area was estimated 
for Thatta and Multan districts.  

Total 36 districts has significant area under cotton rotation. In 
cotton area comparison, NDVI*LAI achieves RMSE, MAPE of 
(20.58, 30.21%) followed by LAI (31.90, 39.08%) and then 
NDVI (39.93, 37.51%) respectively (Figure 4c). NDVI, LAI and 
NDVI*LAI datasets has generally estimated area with 
fluctuation of 23%↑, 3%↑ and 0.9%↓ respectively. Average 
maximum deviation of 55%↑ and 42%↓ is estimated for Matiari 
and Badin district respectively. 

For sugarcane crop cover, LAI dataset performs better by 
attaining RMSE and MAPE of 8.60 and 34.58%. Whereas, 
RMSE of 10.08 and 10.83 and MAPE of 40.53% and 39.45% 
was obtained by NDVI and NDVI*LAI datasets respectively 
(Figure 4d). Overall, each dataset exaggerated in estimating 
sugarcane area with least deviation of 1%↑ by LAI, followed by 
NDVI (2%↑) then NDVI*LAI (18%↑). Average maximum 
fluctuation of 68%↑ and 34%↓ is estimated for Sanghar and 
Mandi Bahauddin district respectively.
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Figure 4. Comparison of estimated crop area with reported area of (a) wheat, (b) rice, (c) cotton and (d) sugarcane.

3.3. Spatial variation of crop rotation 

Three provinces has wheat-rice rotation with, 86% in Punjab, 9% 
in Sindh and 4% in Balochistan. A total area of 1530 (000, ha) 
(11%) is under wheat-rice rotation of this irrigated basin. 
Nasirabad, Gujranwala and Larkana are major areas of wheat-
rice rotation in study region. Wheat-cotton rotation is only 
dominate in Punjab (78%) and Sindh (22%). Bahawalnagar and 
Sanghar are main districts of each province to have highest area 
cultivated under wheat-cotton rotation. A total area of 2503 (000, 
ha) (18% of study region) is under wheat-cotton rotation. Wheat-
fodder rotation distribution is 89% in Punjab, 9% in Sindh and 
2% in KPK. Sargodha, Khairpur and D.I.Khan are the areas of 
dominant wheat-fodder rotation. A total area of 2723 (000, ha) 
(19%) is under wheat-fodder rotation. Sugarcane is cultivated on 
871 (000, ha) (6%) land in which 68% is cultivated in Punjab, 
31% in Sindh and 1% in KPK. Rahim yar khan, Badin and 
D.I.Khan has the highest area sown under sugarcane. Fraction of 
major crop rotations within each province is shown in Figure 5. 
Punjab has major crop rotation wheat-fodder (25%). Sindh and 
KPK has fodder-fodder crop rotation occupying 26% of cropland. 

Whereas, Balochistan has wheat-rice (22%) as a major crop 
rotation.  

 

Figure 5. Fraction of different crop rotation in each province. 
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Pixel based distribution of different crop rotation in study region, 
derived from three phenological datasets, is shown in Figure 6. 
It is evident that mixing of bare soil and built-up with cropland 
is minimized by incorporating LAI with NDVI. This mixing was 
the main cause of overestimation different crop areas when using 

only NDVI dataset. LAI alone do not produce good result in 
areas with sparse cropland especially in desert or in delta regions. 
NDVI dataset also makes it difficult to distinguish fodder from 
shrubs due to high base value. This can be avoided by fusing 
NDVI and LAI together.

 

Figure 6. Spatial distribution of different crop rotation in study region derived from NDVI, LAI and NDVI*LAI. 

 
4. CONCLUSION 

Individual analysis of each dataset reveals that LAI performs 
better in mapping land feature that contain high biomass (e.g., 
sugarcane, forest or orchards). Rice crop nursery is transplanted 
under standing water and NDVI dataset does contain high 
moisture information. Therefore, NDVI can be a good temporal 
phenological information to map single season rice crop. 
Nevertheless, analysis of crop rotation mapping concludes that 
fusion of NDVI and LAI perform better for mapping of wheat-
rice, wheat-cotton and wheat-fodder rotation. Derived data 
(NDVI*LAI) not only exclude non-vegetative land features but 
also facilitates in subdividing different crop cluster during 
unsupervised classification without image segmentation that 
cannot be achieved using NDVI and LAI individually. This split 
in clusters helps to classify different crop rotations more 
accurately. Combined data reduce the base value in phenology 
matrix and increase curve separability making crop identification 
easy and efficient.  Phenology curve analysis reveals that cash 
crop rotations have high curve response indicating favorable 
crop growing conditions. These conditions are generally 
concentrated in Punjab province. Crop area analysis shows that 
Punjab has 71% irrigated cropland while Sindh, KPK and 
Balochistan has 25%, 3% and 2% of study region respectively. 
Cash crop rotation analysis indicates that wheat-cotton is the 
main cash crop rotation in Punjab and Sindh. KPK has wheat-
fodder as dominant cash crop rotation with maize as major 
fodder crop. Whereas, wheat-rice is major cash crop rotation in 
Balochistan. Sindh has highest fraction (18%) of sugarcane-

cultivated area with respect to area sown under cash crops 
followed by KPK (17%) and Punjab (9%).  

Major crop rotations of an area is a key information for planning 
of food security, resource management and rural development. 
Water and nutrient demands vary for different crops. Therefore, 
crop rotation mapping helps policy analysts and managers to 
articulate better plans for effective utilization of limited 
resources. This data fusion offers a robust method to map crop 
rotation, without image segmentation, in a large and diverse 
irrigated basin having more than one cropping seasons.  
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