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ABSTRACT: 

 

High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS 

images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene 

classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target 

detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines 

the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, 

this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our 

framework achieved satisfying accuracies on two datasets, which is 95.57% and 83.35% respectively. From the experiments result, 

our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will 

be more practical for further HRRS scene classification, since it costs less time on training stage. 

 

 

 Corresponding author should be addressed to Hongrui Zhao, Email: zhr@tsinghua.edu.cn. 

1. INTRODUCTION 

Remote sensing is a non-contact technology for surface 

observations that enables rapid and large-scale acquisition of 

surface information. The automatic extraction of ground object 

information from remote sensing images is a hot topic in the 

field of remote sensing image analysis (Zhang et al. 2016). With 

the continuous improvement of the spatial resolution of remote 

sensing images, the information extraction methods for remote 

sensing images are not satisfied with pixel-based and object-

based methods (Fu G, Liu C, Zhou R, et al. 2017). People want 

to mine a higher level of semantic information from the image, 

and ground objects forms different semantic scene categories 

through different spatial distribute pattern (Bratasanu et al. 

2011; Lienou et al. 2010). The scene not only contains the 

information of the ground objects, but also includes the spatial 

relationship between the ground objects and the environment. 

Scene categories of images are people's overall understanding of 

an image, and contain the contextual information of objects in 

the image. For example, Fig.1 (a), (b), (c) can be classified into 

the commercial area, residential and forest scene theme 

respectively. With the rapid growth of the amount of remote 

sensing image data, the semantic information of automated 

mining images is even more important. The need for automatic 

annotation methods for image scenes is also urgent. 

 

In recent years, methods based on deep learning technology 

have made great breakthroughs in some computer vision task, 

for example, image classification and target recognition (Lecun 

Y et al. 2015). The convolutional neural network model has 

good feature extraction and classification ability in natural 

scene images. Deep learning technology has also gradually 

attracted the attention of remote sensing communities. And deep 

learning technology have shown good performance in HRRS 

scene classification (Zou Q et al. 2015). For example, models 

such as CaffeNet, VGGNet and GoogLeNet model have been 

successfully applied in remote sensing scene classification tasks. 

The structures of these models are mostly composed of multi 

convolutional layers and fully connection layers. Convolutional 

layers are used to extract image features, fully connection layer 

for classification. However, the number of parameters in the 

fully connected layer accounts for almost 80% of the total 

number of model parameters, which greatly increases the 

training and use cost of the model, and poses a high risk of 

over-fitting for the lack of enough labeled data.  

 

   
(a) commercial  (b) residential (c)forest 

Figure 1 Three scenes with different sematic class 

 

In order to solve this problem, this paper presents a framework 

for HRRS images scene classification, using XGBoost classifier 

instead of fully connected layer classification. XGBoost is an 

ensemble learning algorithm. It is a very popular algorithm in 

academia and industry and has also achieved good results in a 

lot of data mining competitions such as Kaggle (the largest and 

most diverse data community in the world). The XGBoost 
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system provides open source toolkits, and users can expand on 

their own needs. (Chen et al. 2015). In general, the framework 

consists of two parts: (1) fine-tuning the pre-trained CNN 

model, transfer the CNN pre-trained on the large-scale dataset 

ImageNet(Fei-Fei L et al. 2009), and using the CNN for images 

feature extraction; (2) using XGBoost classifies the features to 

get the scene category of the images. 

 

The remainder of this paper is organized as follows. In Section 

2, some related works are presented. Our framework for HRRS 

scene classification are described in Section 3. In Section 4, we 

introduce the datasets and experiment in detail. Our 

framework’s performance are shown and discussed in Section 5. 

Finally, Section 6 presents the conclusion of this paper. 

 

2. RELATED WORK 

In the early studies of remote sensing image scene classification, 

people usually used hand-designed low-level image features, 

such as color histograms, texture descriptors, GIST, scale 

invariant feature transform (SIFT), and histogram of oriented 

gradients (HOG) etc. People use these low-level features to 

describe images and distinguish image categories for a long 

time. But these classification methods based on the low-level 

features of the remote sensing images is very sensitive to noise. 

These traditional scene recognition methods rely on these image 

features hand-crafted by experts and require a lot of prior 

knowledge, and the generalization ability of these features is not 

strong. 

 

Later, there were classification methods using the middle-level 

features of the images, and these methods were mostly based on 

the bags of the visual words (BoVW) model (Yang et al. 2010) 

which was evolved from text classification. The features of the 

images are clustered using k-means algorithm to obtain a 

codebook of visual features. Then the frequency of visual words 

in the images is counted for classification. The BoVW model 

can fuse multiple features to improve the classification accuracy. 

And features fusing strategy is also a hot research issue. In 

addition, the topic model is also a very effective method. The 

topic model adds a hidden variable, the topic, between the scene 

category and the visual words of the image. LDA (Blei et al. 

2003) and pLSA (Bosch et al. 2006) are the two most 

commonly used topic models. The BoVW model and topic 

model have achieved good results in the field of computer 

vision and has become the mainstream approach in image 

classification tasks for a period of time.  

 

At present, deep learning technology which was inspired by 

human visual mechanism has been widely used in the field of 

computer vision, especially the convolutional neural network 

model, which has become the preferred model for various visual 

tasks. Deep learning has achieved excellent results in 

handwritten digital recognition tasks and has opened a door to 

image classification tasks. Deep learning method can extract 

global features of images hierarchically and achieve better 

images classification results. The outstanding performance of 

deep learning in the different datasets also confirmed its 

powerful generalization ability in feature extraction.  

 

In the field of remote sensing scene classification, CNN models 

have also gradually been used. Reference (Otavio et al. 2015) 

used pre-trained convolutional neural networks for the first time 

to process remote sensing scene classification tasks, and 

confirmed that CNN has stronger generalization ability from 

natural images to remote sensing images when other approaches 

based on low-level features. Hu fan et al. transferred the pre-

trained CNNs(AlexNet, CaffeNet, VGGNet) to overcome the 

limitation of lacking the labeled remote sensing data, and 

evaluated the CNN features get from the fully-connected layers 

and convolutional layers respectively for scene 

classification(Hu et al. 2015). Marco Castelluccio et al., fine-

tuned the CaffeNet and GoogLeNet on remote sensing datasets 

(Castelluccio et al.2015). And the results showed that CNNs 

achieved the highest accuracy so far. Then there are many 

literatures designed many models for HRRS scene classification 

task. Yanfei Zhong et al. proposed the large patch convolutional 

neural network (LPCNN) that achieved good results in small-

scale remote sensing dataset (Zhong et al. 2016). Dimitrios 

Marmanis et al. proposed an approach of fusing the many 

hidden layers’ features to reduce the computational burden of 

the model (Marmanis et al. 2016). Qian Weng et al. combined 

the convolutional neural networks and extreme learning 

machine (ELM), and they test this method on the UC-Merced 

dataset and achieved satisfactory results (Weng al. 2017). Since 

then, transferring the pre-trained CNN model from nature 

datasets has become the dominant method for remote sensing 

image feature extraction.  

 

3. PROPOSED FRAMEWORK 

Scene classification task has two important stages: (1) feature 

extraction and selection; (2) classifier design. Correspondingly, 

the architecture of this framework consists of two parts. (Figure 

2). (1) We transfer pre-trained VGG-16 model on large image 

dataset ImageNet in order to better extract the features of 

remote sensing images. The global features of HRRS images are 

extracted through this stage. (2) XGBoost is an ensemble 

method, which improve the accuracy of classification through 

iterative computation of weak (basic) classifiers. Features got by 

first stage are fed into the XGBoost classifier, and this stage 

outputs the scene category of the image. 

 

 
Figure 2. The architecture of our framework 

 

3.1 Feature Extractor 

The first stage utilizes the VGG-16 model (one of the most 

popular CNN models nowadays) to extract features from HRRS 

images. The architecture of feature extractor in VGG-16 has 

five parts which contains two or three convolutional layers and 

one pooling layer. The parameters of these parts are shown in 

table 1. The parameters of convolutional layers are expressed as 

“conv (kernel size weight * height) – (number of convolution 

kernels)”.  
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Part Parameters 

Part1 

conv 3*3-64 

conv 3*3-64 

Max-pool 2*2 

Part2 

conv 3*3-128 

conv 3*3-128 

Max-pool 2*2 

Part3 

conv 3*3-256 

conv 3*3-256 

conv 3*3-256 

Max-pool 2*2 

Part4 

conv 3*3-512 

conv 3*3-512 

conv 3*3-512 

Max-pool 2*2 

Part5 

conv 3*3-512 

conv 3*3-512 

conv 3*3-512 

Max-pool 2*2 
Table 1 Parameters of 4 part in VGG-16 feature extractor 

 

A convolutional layer get a feature map by computing the dot 

product between the receptive field and kernel. In general, an 

activation function is added behind each convolutional layer, 

such as the Sigmoid function, Rectified Linear Unit (ReLU), 

Tanh et al. This part uses the ReLU as the activation function. 

The formula for the ReLU function is : 

 

( ) max(0, )f x x                           (1) 

 

And ReLU function image shown in Figure 3.  

 

 
 

Figure 3 Image of the ReLU function. 

 

The pooling layer is to downsample the image feature maps. 

There are two widely used pooling layers, the average pooling 

layer and the maximum pooling layer. The max-pooling layers 

used in this model, will return the max value from each sub-area, 

and the images are down-sampled by max-pooling layers, 

causing 1/2 reduction in each image’s height and weight. Figure 

4 is the image of the pooling layer. 

 

Then we transfer pre-trained VGG-16 on large image dataset 

ImageNet in order to better extract the features of remote 

sensing images. The global features of HRRS images are 

extracted through this stage. 

 

 

 

 

 

 
Figure 4. Illustration of pooling layer. The pooling layer with 

filters of size 2x2 and stride of 2 was shown above. 
 

3.2 XGBoost Classifier 

The XGBoost classifier replace the fully connected layer for 

classification. XGBoost is an ensemble method, which improve 

the accuracy of classification through iterative computation of 

weak (basic) classifiers. Features got by first stage are fed into 

the XGBoost classifier, and this stage outputs the scene 

category of the image. 

 

The tree model is generally used as a basic classifier in 

XGBoost System. The K trees ensemble mode is: 

 

 
1

ˆ , k

K

i k

k

iy f x f


                                 (2) 

     : ,m T

q x
f x w q T w          (3) 

 

Where  is the space of functions containing all regression 

trees. Here  f x  is the decision function,  q x represents 

the structure of each tree, and w represents the score in the leaf. 

For a remote sensing image feature vector, we will get the score 

of its corresponding leaf node on each regression tree. Finally 

add these scores to get the final prediction of the image. We 

defined the objective function:  

 

   
1 1

obj , ˆ Ω
n K

i i k

i k

l y y f
 

                    (4) 

  21
Ω γT+

2
f w                                  (5) 

 

where l  represents the loss function, which is used to measure 

the difference between the prediction result ˆ
iy  and true result 

iy . And Ω  is a regular term that expresses the complexity of 

the model and avoids overfitting the model. Then we get the 

final classifier by optimizing this objective function.  

 

4. EXPERIMENT 

4.1 Datesets 

In this paper we selected two datasets for experiment, UC-

Merced dataset and NWPU-RESISC45 dataset. The UC-

Merced dataset was provided by United States Geological 
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Survey (USGS), and UC-Merced dataset has become one of the 

most commonly used dataset in HRRS scene classification task 

(Yang et al. 2010). This dataset consists of 21 classes of scene 

with the spatial resolution 0.3 meter. There are 100 images of 

256×256 pixels in each category. Figure 5 show some sample 

images for each class included in the UC-Merced dataset. 

 

   
agricultural airplane baseball diamond 

   
beach buildings chaparral 

   
dense residential forest freeway 

   
golf course harbor intersection 

   
medium residential mobile home park overpass 

   
parkinglot river runway 

   
sparse residential storage tanks tennis court 

Figure 5: Some images from UC-Merced dataset 

 

Another dataset is NWPU-RESISC45 dataset (Cheng et al. 

2017). This dataset was provided by Northwestern 

Polytechnical University (NWPU). As far as we know, the 

NWPU-RESISC45 dataset is the most challenging dataset in 

HRRS image scene classification tasks because it has larger 

scale on scene categories and image number than other datasets. 

Furthermore, images of each scene category in NWPU-

RESISC45 dataset has rich variations, such as illumination, 

resolution, shooting angle, background, etc., which also 

increases the difficulty of scene classification. NWPU-

RESISC45 dataset images are divided into 45 scene classes, and 

spatial resolution of images varies from 30m to 0.2m. The scene 

categories in NWPU-RESISC45 dataset are: airplane, airport, 

baseball diamond, basketball court, beach, bridge, chaparral, 

church, circular farmland, cloud, commercial area, dense 

residential, desert, forest, freeway, golf course, ground track 

field, harbor, industrial area, intersection, island, lake, meadow, 

medium residential, mobile home park, mountain, overpass, 

palace, parking lot, railway, railway station, rectangular 

farmland, river, roundabout, runway, sea ice, ship, snowberg, 

sparse residential, stadium, storage tank, tennis court, terrace, 

thermal power station and wetland. 

 

4.2 Experimental Protocol 

We compare our framework with the VGG16 model, and we 

also added a traditional support vector machine (SVM) 

classification method to compare. In order to evaluate the 

accuracy and efficiency of our framework, we choose three 

indicators: overall accuracy (OA), time of model training, and 

kappa coefficient. The two datasets are divided into training set 

and test set according to the ratio of 80:20. And we randomly 

selected images from each category for training and testing. 

Training set is used for model training, and test set is used for 

evaluating the accuracy of the model.  

 

The VGG16 model was pre-trained on ImageNet dataset, and 

we fine-tuned the model through both datasets to improve its 

generalization ability. We used the back propagation algorithm 

to train the convolutional layers and the fully-connected layers.  

Stochastic gradient descent algorithm was used by us to 

optimize parameters. The batch size for each iteration in the 

training is 64 and the learning rate is 0.001. We also used the 

dropout method to avoid overfitting. We use the TensorFlow 

(https://www.tensorflow.org/) framework to implement the deep 

learning model and use the sklearn library (https://www.scikit-

learn.org) to implement the XGBoost and SVM classifier. And 

our program was run on a PC with 2 3.2GHz 8-core CPUs, 

32GB memory and a NVIDIA TITAN X GPU for acceleration. 

 

5. RESULTS AND DISCUSSION 

Table 2 shows the performance comparison with the VGG16 

and SVM model on UCM dataset and NWPU dataset. As we 

can see from the Table2, the CNN-XGBoost framework obtains 

the best classification accuracy than the VGG16 and SVM, and 

cost less time on training stage than VGG16 model. Our 

framework achieves satisfying accuracies on two datasets, 

which is 95.57% and 83.35%, respectively 6.05%, 2.1% higher 

than VGG16 model and 3.81%, 0.46% higher than SVM. In 

addition, our framework consumed 70 minutes less than the 

VGG16 model during the training time of the UC-Merced 

dataset. However, in the training of large-scale NWPU-

RESISC45 dataset, our framework can save more time, saving 

about 2 hours. Compared to SVM method in training time, our 

framework consumes only a few minutes more than SVM, and 

there is almost no difference. The kappa coefficient is a ratio 

that represents the proportion of errors caused by classification 

and completely random classification. The kappa value of our 

framework is also higher than other two methods. 

 

Figure 6 shows the per-class classification accuracies of our 

framework, SVM and VGG16 model. We can find that our 

framework performs better than VGG16 and SVM methods in 

most class. Classes building, sparse residential, medium 

residential and dense residential are the worst performance in 

three methods. From the sample images shown in Figure 5, we 

can see that the three categories buildings, medium residential, 
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and dense residential are particularly similar, and even human 

interpreters can hardly distinguish between them. The confusion 

matrix of the classification results gives detailed information. 

We use the confusion matrix (Figure 7-10) of the three 

classification methods to mine their classified error information. 

The VGG16 model identifies 22.5% of the buildings as dense 

residential class, and a large proportion of medium residential 

areas are also misidentified as dense residential category. The 

scene class with the lowest SVM classification result is dense 

residential, with 10% misclassification as the building scene 

class and 10% misrecognition as medium residential class. 

Although our method also has mistakes in these similar scene 

categories, our framework is still higher than the other two 

methods in the overall classification accuracy of the four 

categories: building, sparse residential, medium residential, and 

dense residential. 

 

Dataset Method OA 
Time of 

model training 
Kappa 

UC-

Merced 

VGG16 89.52% 
1 hour 40 

minutes 
0.8899 

SVM 91.76% 24minutes 0.9135 

Our 

framework 
95.57% 30 minutes 0.9535 

NWPU-

RESISC45 

VGG16 81.25% 
4 hour 

2minutes 
0.8083 

SVM 82.88% 
1hour 

52minutes 
0.8250 

Our 

framework 
83.35% 2 hour 0.8297 

Table2 Experimental results on the UC-Merced and NWPU-

RESISC45 dataset 

 

 
Figure 6 Comparison of the classification accuracy of each 

class of the three methods on the UC-Mercerd dataset. Blue 

represents our framework. Yellow represents the VGG16 

model. Green represents the SVM. 

 

 
Figure 7 The confusion matrix of VGG16 model's  

classification result on UC-Merced dataset. 

 

 
Figure 8 The confusion matrix of our framework’s  

performance on UC-Merced dataset. 

 

 
Figure 9 The confusion matrix of SVM  

classification result on UC-Merced dataset. 

 

Figure 10-13 show us the classification performance of each 

class of the three classification methods on the NWPU-

RESISC45 dataset. For cloud, desert, lake, forest, mountain, sea 
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ice and wetland scene class, they are easier to distinguish 

because their texture and color difference is more obvious. Our 

framework and other two methods have similar classification 

accuracy. But in category palace and church, their texture 

features are relatively close, and our classification performance 

is obviously better than the other two methods. 

 

Summarizing the above discussion, we find that our framework 

has greatly improved the classification accuracy on dataset UC-

Merced compared to other methods. For dataset NWPU-

RESISC45, our overall accuracy is still the highest, but since 

the classification of dataset NWPU-RESISC45 is particularly 

difficult, our method does not provide much improvement in 

accuracy. However, it can save nearly half of the training time 

on dataset NWPU-RESISC45. 

 

 

 
Figure 10 Comparison of the classification accuracy of each 

class of the two methods on the NWPU-RESISC45 dataset. Blue 

represents our framework. Yellow represents the VGG16 model. 

Green represents the SVM. 

 

 
Figure 11  The confusion matrix of VGG16 model's 

classification result on NWPU-RESISC45 dataset. 

 

 
Figure 12 The confusion matrix of our framework’s 

performance on NWPU-RESISC45 dataset. 

 

 
Figure 13 The confusion matrix of our SVM’s  

performance on NWPU-RESISC45 dataset. 

 

6. CONCLUSION 

We know that there are too many parameters in the fully 

connection layers, which limits the training and using of the 

deep learning model. Our framework is proposed to solve this 

problem. We use XGBoost system instead of the fully 

connection layer in this framework to complete the 

classification task. And our framework integrates feature 

extraction capabilities of convolutional neural network and 

advantages of the XGBoost classifier. We evaluated our 

framework through the UC-Merced dataset and NWPU dataset, 

and our framework took less training time but achieved higher 

accuracy. So, this framework has been proven to be effective for 

remote sensing images classification. Furthermore, we believe 

this framework will be more practical for further HRRS scene 

classification, since it costs less computing resources. 

 

In future, we intend to use multi-source data to assist in remote 

sensing scene classification such as point of interest (POI), 

social media data, etc. We also need to explore new 

technologies to combine these data with location and remote 

sensing data. Furthermore, it is also very meaningful to explore 

the application mode of the HRRS image scene classification in 

the field of urban planning and image retrieval. 
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