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ABSTRACT: 

 

In recent decades, urbanization has resulted a massive increase in the amount of infrastructure especially large buildings in large cities 

worldwide. There has been a noticeable expansion of entire cities both horizontally and vertically. One of the common consequences 

of urban expansion is the increase of ground loads, which may trigger land subsidence and can be a potential threat of public safety. 

Monitoring trends of urban expansion and land subsidence using remote sensing technology is needed to ensure safety along with 

urban planning and development. The Defense Meteorological Satellite Program Operational Line scan System (DMSP/OLS) Night-

Time Light (NTL) images have been used to study urbanization at a regional scale, proving the capability of recognizing urban 

expansion patterns. In the current study, a normalized illuminated urban area dome volume (IUADV) based on inter-calibrated 

DMSP/OLS NTL images is shown as a practical approach for estimating  urban expansion of Beijing at a single period in time and 

over subsequent years. To estimate the impact of  urban expansion on land subsidence, IUADV was correlated with land subsidence 

rates obtained using the Stanford Method for Persistent Scatterers (StaMPS) approach within the Persistent Scatterers InSAR 

(PSInSAR) methodology. Moderate correlations are observed between the urban expansion based on the DMSP/OLS NTL images and 

land subsidence. The correlation coefficients between the urban expansion of each year and land subsidence tends to gradually decrease 

over time (Coefficient of determination R = 0.80 – 0.64 from year 2005 to year 2010), while the urban expansion of two sequential 

years exhibit an opposite trend (R = 0.29 – 0.57 from year 2005 to year 2010) except for the two sequential years between 2007 and 

2008 (R = 0.14). 

 

 

1. INTRODUCTION 

Land subsidence is the process of lowering the ground surface 

elevation due to natural or human-induced impacts. Damage 

caused by land subsidence can be fatal and may cause problems 

such as changes in elevation and slope of streams and drains, 

damage to buildings, bridges and infrastructure (Amelung et 

al.,1999). A number of studies have shown that the excessive 

exploitation of groundwater is one of the main causes of the land 

subsidence (Pratt and Johnson 1926; Lewis and Schrefler 1978; 

Zhao et al., 2016). Overuse of aquifers in urban areas is amplified 

by urban population growth and development. Meanwhile, with 

the process of urbanization, high building density, large building 

footprints, and building volumes are found to have major impacts 

(Yan, 2002; Jie et al., 2007; Chen et al., 2015; Jiao et al., 2017). 

Land subsidence as a result of the load caused by urban 

expansion is becoming a critical issue in many major cities such 

as Beijing in China, influencing the urban security and further 

development of the city (Abidin et al., 2001; Gong, 2002; Chen 

et al., 2015).  

 

Remote sensing technologies have been extensively used in 

regional hydrological and geo-mechanical models to quantify the 

relationship between urban expansion and land subsidence. 

Following the development of Synthetic Aperture Radar (SAR) 

remote sensing technology in recent years, SAR interferometry 

(InSAR) has developed into a potential tool for monitoring land 

subsidence (Graham, 1974). In particular, the Permanent 

Scatterers InSAR (PSInSAR) technique is praised as a potentially 

*  Corresponding author 

unique tool for monitoring fine land deformation over large areas 

(Ferretti et al., 2001). Permanent Scatterers (PS) are identified 

from long temporal series of interferometric SAR images. PS 

points are stable radar targets, which have time stable amplitude 

and phase in all exploited SAR images (Lesniak and Porzycka 

2009). The advantages of PSInSAR are that it reduces space and 

time decoherence, impairs the influence of atmospheric delay and 

obtains accurate sequence deformation of PS to improve the 

capacity of monitoring ground subsidence (Ferretti et al.,2001; 

Colesanti et al.,2003). In 2004, Hooper et al. developed StaMPS 

(Stanford Method for Persistent Scatterers), as an extension of 

the PSInSAR technique, to identify the point targets with low 

scattering intensity and phase stability, increasing the spatial 

density of the identification points. StaMPS has proven to be 

effective in monitoring land subsidence in the Beijing area using 

high resolution images to recognize miniscule ground 

deformation (Chen et al.,2015; Zhu et al.,2015). While these 

studies used remote sensing, and PSInSAR technology, in 

particular, to monitor the relationships between lands subsidence 

and a single urban property such as building load pressure (Tang 

et al., 2008; Cui et al., 2010), or building volume (Jiao et al., 

2017), there is no study that uses remote sensing to observe the 

impact of urban expansion as a whole, where the load caused by 

urban expansion on land subsidence is explored.  

 

The Nigh-Time light (NTL) satellite images collected by the 

Defense Meteorological Satellite Program (DMSP) Operational 

Linescan System (OLS) sensor has become widely used to study 

the pattern of human activity and urban development. In 1978, 
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Croft (1978) first identified the potential of NTL data to observe 

human activities. Since then, various studies have demonstrated 

strong relationships between NTL data and key socioeconomic 

variables such as urban population estimates (Elvidge et al., 

1997a; Sutton et al., 2001; Amaral et al., 2006; Balk et al., 2006), 

population density (Sutton et al., 2003; Zhuo et al., 2009), 

economic activity (Doll et al., 2006), energy use (Doll et al., 2000; 

Elvidge et al., 1997b), impervious surfaces (Elvidge et al., 2007), 

and sub-national estimates of gross domestic product (GDP) 

(Sutton et al., 2007).  

 

In a recent study, DMSP/OLS NTL data was successfully used to 

estimate urban growth. Lo (2002) extracted surface area and 

volume of city lights from DMSP/OLS NTL and demonstrated 

the strong relationship between the volume of city lights and 

urban indicators, including urban population, gross domestic 

product GDP), built-up areas, and electric power consumption 

(EPC) in large city of China such as Beijing, Shanghai and 

Tianjin. Chen et al. (2003) established a complex light index, 

which also included the four variables, from DMSP/OLS NTL to 

estimate the urbanization of China. Ma et al. (2012) verified the 

capability of DMSP/OLS NTL for estimating long-term trends of 

four urbanization variables: urban population, gross domestic 

product (GDP), built-up areas, and electric power consumption 

(EPC) for prefectural-level cities. The mentioned studies 

considered that DMSP/OLS NTL could be used to illustrate the 

morphology of a large city by the four urban indicators (urban 

population, GDP, built-up areas and EPC) estimation models. 

 

In this paper we combine the capability of DMSP/OLS NTL with 

the StaMPS method to examine the impact of the urbanization 

status derived from DMSP/OLS NTL on land subsidence in 

Beijing, China. Similarly to Lo (2002), we calculated normalized 

illuminated urban area (IUA) dome volume from DMSP/OLS 

NTL to illustrate the urban expansion of Tongzhou and 

Chaoyang Districts, two adjacent areas in Beijing in the period 

from 2005 to 2010. The urban expansions are compared with land 

subsidence measurements generated from Envisat ASAR 

temporal images using the StaMPS method. 

 

2.  METHODS 

The overall method in the current study included an inter-

calibration method to adjust time-series DMSP/OLS NTL images 

from 2005 to 2010, which were then used to estimate the urban 

expansion. For the same period, 39 ASAR image were used in 

the StaMPS method to estimate the land subsidence rate of the 

study area. The data was then compared as explained in the 

following sections. 

 

2.1 Urban expansion estimation by DMSP/OLS 

Because of the differences in radiometric performance, lack of 

onboard radiometric calibration, and sensor degradation over 

time, data from different OLS instruments require inter-

calibration before they can be used to assess lighting changes 

over time. To improve the consistency and comparability of the 

NTL temporal data, we adapted an empirical procedure named 

second order regression model, which was validated by Elvidge 

in 2009 (Elvidge et al., 2009). Since multiple images were not 

available from the same instrument, we selected images from 

satellite F16 acquired from 2005 to 2009 and one image from 

satellite F18 acquired in 2010. The inter-calibration of the 

datasets was conducted by using second order polynomial 

regression (Eq. 1) (Yi et al., 2014). The calibrated DNs were 

calculated as: 
 

 𝐷𝑁𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = 𝑎 × 𝐷𝑁2 + 𝑏 × 𝐷𝑁 + 𝑐  (1) 

 

where DN is a digital number value of a pixel , and DNcalibrated is 

the inter-calibrated DN. The model coefficients a, b and c were 

used as proposed by Yi (Yi et al., 2014) (Table 1). 

 

Satellite Year a b c R2 

F15 2005 0.0071 0.4805 0.6281 0.955 

F15 2006 0.0057 0.6042 0.2504 0.979 

F15 2007 0.0049 0.6308 0.1775 0.983 

F16 2005 0.0073 0.4648 0.8615 0.963 

F16 2006 0.0029 0.7822 0.2173 0.976 

F16 2007 1.0000 0.0000 0.0000 1.000 

F16 2008 -0.0003 1.0258 -0.0870 0.983 

F16 2009 -0.0017 1.0388 0.0057 0.897 

F18 2010 0.0121 0.1277 0.0121 0.848 

Table 1. Inter-calibration coefficient used in the current study 

for the period between 2005 and 2010 (Yi et al., 2014) 

 

After inter-calibration, illuminated urban area (IUA) dome is 

calculated as (Eq. 2): 

 

 𝐼𝑈𝐴 =  𝐷𝑁𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑  × 𝑆                                    (2) 

 

where 𝐷𝑁𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑  donates the inter-calibrated DN of 

DMSP/OLS and S donates the area of the grid. After 

normalization, normalized IUA dome volume (NIUADV) is 

obtained to illustrate the urban expansion. 

 

2.2 Land subsidence monitoring by Stanford Method for 

Persistent Scatterers (StaMPS) 

To obtain the land subsidence rate from 2005 to 2010, StaMPS 

(Hooper et al., 2004), was applied in our study to identify phase 

components, using amplitude discrete features and characteristics 

of the interferometric phase spatial correlation for PS recognition 

algorithm to identify permanent scatterers (PSs). Without any 

prior knowledge of the deformation rate, we attempted to 

overcome the problems due to time decoherence, improving the 

number of available interferograms and time resolution (Chen et 

al., 2015). The StaMPS is conducted as (Eq. 3): 

 

 ∅𝑝
𝑖,𝑘 = ∅𝑆

𝑖,𝑘 + ∅𝐵
𝑖,𝑘 + ∅𝑇

𝑖,𝑘 + ∅𝑁
𝑖,𝑘

                   (3) 

 

where ∅𝑝
𝑖,𝑘

 donates the differential phase of interferometry 

obtained by i image and k image; ∅𝑆
𝑖,𝑘

donates the spatial 

correlation phase composed of atmospheric phase, orbit error, 

spatial correlation DEM and surface deformation; ∅𝐵
𝑖,𝑘

donates 

the component correlated to the perpendicular baseline; 

∅𝑇
𝑖,𝑘

donates component of temporal phase, consisted of non-

spatially correlated surface deformation and atmospheric phase 

caused by seasonal variations; ∅𝑁
𝑖,𝑘

donates random noise. 

 

To validate the precision of StaMPS result, several PSs within a 

range of 200 m were selected to calculate the average value of 
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land subsidence which is then compared to land subsidence of 

bench mark with the known values. The land subsidence rate 

result of PSs was interpolated to raster image using Kriging 

method in Universal Transverse Mercator projection, UTM, 

Zone 50. 

 

2.3 Relationship between urban expansion and land 

subsidence evaluation 

Spearman’s rank correlation coefficient is a nonparametric 

measure of rank correlation, which is used to assess the 

relationship between two variables by a monotonic function. 

 

To evaluate the relationship between urban expansion and land 

subsidence, we chose to calculate the Spearman correlation 

coefficient. After the geo-registration (UTM 50), time-series 

NIUADVs and land subsidence rates are extracted to the same 

range in ArcMAP. The Spearman correlation coefficient between 

time-series NIUADVs and land subsidence rate can be calculated 

in Matlab for the analysis of the impact of urban expansion on 

land subsidence. 

 

3. STUDY AREA AND DATASETS 

3.1 Study area 

Beijing is the capital of China and one of the most populous cities 

in the world with a population of over 20 million. The city 

occupies 16807.8 km2 in area and it is bordered by mountains to 

the northwest and by the sector plain southeast of the city. Beijing 

is affected by a continental monsoon climate, with an average 

annual precipitation of 588 mm/year (1956-2002) and with 80% 

of the annual accumulation occurring between mid-June and 

September. Beijing’s plain is composed of water-bearing 

alluvial-pluvial and river channel deposits overlying bedrock. 

Tertiary and older sedimentary and volcanic rock units underlie 

Quaternary sediments and form the lateral and basal boundaries 

of the aquifer system. Groundwater is the main water source for 

the population of Beijing. The city is known for water shortages 

as ground water extraction counts for 2/3 of total water supply 

(Zhu et al., 2015). Since 1990, relatively stable pumping rates 

have been maintained at about 2.5×109 m3/year (Zhang et al., 

2014).  

 

With urbanization, high-rise buildings have become urban 

landmarks and the subway system has become the conventional 

mode of transportation. In recent two decades, the development 

of central cities (Xicheng and Dongcheng district) remains stable, 

while eastern cities such as Shunyi and Tongzhou district have 

been developing exponentially. At the beginning of the 21st 

century, Chaoyang became the economic center of Beijing. 

Especially during the preparation for the 2008 Olympic Games, 

the district became known for its excessive landscape 

transformation. During the same period the Tongzhou district 

became the “Sleeping City”, where the increase of residential 

development was evident, especially after 2006. 

 

According to previous studies, land subsidence in the middle of 

Beijing (Xicheng and Dongcheng District) has remained stable 

(Chen et al., 2015; Zhang et al., 2014), while there is relatively 

serious land subsidence in east Beijing. Before 2007, a serious 

land subsidence region was defined in the southeast region of 

Beijing, where the accumulative ground subsidence was found to 

be as high as 722 mm, affecting the common life and the building 

security.  Monitoring and analysis of the land subsidence trend in 

this area has become an important issue for Beijing. In this study, 

we chose the southeast region of Beijing (Figure 1), including 

two districts (Chaoyang and Tongzhou district), as study sites to 

evaluate the impact of urban expansion on land subsidence. 

 
Figure 1. Study area 

 

3.2 Data 

3.2.1 Multi-temporal dataset of DMSP/OLS night time 

light： The Operational Linescan System (OLS) was developed 

under the Defense Meteorological Satellite Program (DMSP). 

The DMSP/OLS instrument was initially designed to observe 

clouds illuminated by moonlight or the Night-Time Light (NTL) 

data (Elvidge et al., 1997a). DMSP /OLS has a wide orbital swath 

scanning the land surface as wide as 3000 km in one pass. The 

data acquisition by DMSP /OLS started in 1972 from six 

satellites in the DMSP system: F10 (1992-1994), F12 (1994-

1999), F14 (1997-2003), F15 (2000-2007), F16 (2004-2009) and 

F18 (2010-Present). The DMSP stable lights product provides 

annual composites of NTL images from a broad spectral band 

(0.4–1.1 μm) which are filtered to remove the effects of 

moonlight, stray light, clouds, and ephemeral light sources such 

as fires and gas flares. The digital numbers (DN) range between 

0 and 63, where 0 corresponds to no light or missing data, and 

the range between 1–63, which corresponds to the range between 

the lowest detectable and saturation radiance (Ma et al., 2012). 

 

In the current study the Version 4 DMSP/OLS stable lights 

product developed for the period between 2005 and 2010 (F16: 

2005-2009 and F18: 2010) was used for the higher coefficient 

than the other alternative F15 2005-2007 (Table 2). 
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3.2.2 Envisat ASAR: The remote sensing data used to 

observe land subsidence rate included 39 Advanced Synthetic 

Aperture Radar (ASAR) satellite images. ASAR is an active 

radar satellite sensor launched by European Space Agency (ESA) 

in 2002 (Holah et al., 2005). The images had both the ground and 

azimuth range resolutions of 30.0 m. In the current study, we used 

39 ASAR images for the period between 2005 and 2010. The 

height of the satellite acquiring radar data according to the master 

image was defined as 0 m. The image acquired on December 3, 

2008 was chosen to be the master image. Another 38 images were 

co-registered to the master image at the subpixel level. The 

spatial-temporal baseline distribution is shown in Figure 2. The 

spatial baselines are unevenly distributed in elevation direction 

and the maximum spatial baseline span is less than 700 meters 

(Figure 2). The relative height of the satellite acquiring radar data 

is shown in Table 2. 

 
Figure 2. Spatial-temporal baseline of Envisat ASAR 

 

Data Baseline Data Baseline Data Baseline 

20050309 -386.37 20071219 221.11 20090701 -272.72 

20051214 -222.23 20080123 -125.55 20090805 -58.29 

20060816 -967.59 20080227 128.17 20090909 -530.69 

20061025 241.68 20080402 -390.90 20091014 126.18 

20070103 -578.57 20080507 -132.92 20091118 -370.94 

20070207 34.56 20080716 -292.92 20091223 23.34 

20070314 -501.40 20080820 -302.04 20100127 -341.96 

20070418 -15.73 20080924 71.06 20100303 -17.38 

20070627 -129.27 20081029 -197.73 20100407 -464.80 

20070801 -87.26 20081203 0.00 20100512 -303.12 

20070905 -438.03 20090107 -148.82 20100616 -354.13 

20071010 92.21 20090211 -36.17 20100721 62.59 

20071114 -425.27 20090318 -650.00 20100825 -8.97 

 

Table 2. Height of the satellite acquiring radar data. Note: 

Baseline represents the distance between master image and 

slave image 

 

4. RESULT 

4.1 Land subsidence results via StaMPS 

The land subsidence based on the StaMPS method is more 

apparent in the east of Chaoyang and the northwest of Tongzhou 

where it ranges from 0 to -110 mm/yr (Figure 3). The validation 

process suggests that the land subsidence rate values at the 

chosen bench marks and the average land subsidence values of 

PSs within 200 meters around each bench mark do not differ 

considerably (1.81-3.97 mm/yr) and the trends follow each other 

(Table 3). The average difference value over the points is 3.08 of 

mm/yr. The errors may be introduced by the algorithm as the 

differences are relatively consistent over all points. 

 
Figure 3. Land subsidence map obtained by StaMPS 

 

Bench-

mark ID 

Bench mark  

deformation  

(mm/yr) 

Average value of  

PSs around  

bench mark 

(mm/yr) 

Absolute 

difference  

(mm/yr) 

BM1 -1.25 -3.34 2.09 

BM2 -0.50 -2.31 1.81 

BM3 -1.25 -4.83 3.58 

BM4 -6.25 -8.95 2.7 

BM5 -12.13 -9.11 3.02 

BM6 -52.75 -56.72 3.97 

BM7 -30.50 -26.55 3.95 

BM8 -33.25 -29.75 3.50 

Table 3. The difference of land subsidence between benchmarks 

and PSs 
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4.2 Validation of the relationship between DMSP/OLS NTL 

and urban expansion 

To quantify the magnitude of NTL images from the inter-

calibrated DMSP/OLS dataset, weighted light area (WLA) is 

defined as the weighted sum of areas of lit pixels multiplied by 

the normalized DN (Ma et al., 2012).Therefore, the WLA was 

normalized to the range 0 to 1 to estimate the response of 

DMSP/OLS NTL images to urbanization variables (GDP, 

population, EPC and Built-up area).The linear regression models 

applied to the WLA and four urbanization variables are shown in 

Figure 4. 

 

All four variables demonstrate relatively strong relationships 

with WLA. R2=0.78, R2=0.78, R2=0.82, R2=0.69 for GDP, 

population, EPC, and build-up area, respectively, and all four 

regression trends are significant (p=0.05).  

 
Figure 4. Linear response of DMSP/OLS NTL signals shown as 

normalized WLA and a) normalized GPD; b) normalized 

population; c) normalized EPC; d) normalized built-up area 

 

After normalization, the four urbanization variables and WLA 

are plot over the years to explore their trends (Figure 5). The four 

variables as well as WLA increases over time. GDP, population 

and EPC tend to grow gradually at a stable rate while the built-

up area and WLA first increase much slower and then suddenly 

increases significantly in 2008 and 2009, respectively. 

 
Figure 5. The trends of normalized urbanization variables and 

WLA 

 

The difference in values of the normalized urbanization variables 

and WLA between two subsequent years, calculated to examine 

the urban expansion of two sequential years and its response to 

DMSP/OLS NTL images, are shown in Figure 6. The largest 

differences are observed for the built-up areas between 2008 and 

2009 followed by the WLA difference between 2009 and 2010. 

The difference in values for the built-up areas between 2008 and 

2009 is almost seven times greater than for any other years. A 

slight population increase and largest decrease in EPC are 

observed between year 2007 and 2008. A decrease in GDP is 

observed from 2006-2007 to 2008-2009.  

 
Figure 6. The difference in values of the normalized 

urbanization variables and WLA between two subsequent years 

 

4.3 Relationship between land subsidence and urban 

expansion 

To explore the possible response of DMSP/OLS NTL images to 

land subsidence, we adapted Kriging interpolation method to the 

land subsidence rate of PSs in order to obtain land subsidence 

grid data.  

 

The Spearman’s rank correlation coefficients between the land 

subsidence rate and time series of the DMSP/OLS NTL images 

are gradually reducing with time. (From 0.80 for 2005 to 0.64 for 

2010, Table 4).  To exam the response of the change of 

DMSP/OLS NTL images in two subsequent years to land 

subsidence. Five figures were drawn by subtracting two 

DMSP/OLS NTL images in sequential years. The Spearman’s 

rank correlation coefficients between the land subsidence rate 

and time-series of DMSP/OLS NTL images are gradually 

increasing from 0.28 for 2005 to 0.57 for 2010, with the 

exception of the pre-Olympic Game period between  2007 and 

2008 when the correlation is low  (R=0.14) (Table 5) .  

 

 2005 2006 2007 2008 2009 2010 

Correlation 

Coefficient 
0.80 0.78 0.73 0.72 0.70 0.64 

Table 4. The correlation coefficient of land subsidence and 

DMSP/OLS NTL images 

 

 
2005-

2006 

2006-

2007 

2007-

2008 

2008-

2009 

2009-

2010 

Correlation 

Coefficient 
0.29 0.37 0.14 0.45 0.57 

Table 5. The correlation coefficient of land subsidence and the 

difference value of between two DMSP/OLS NTL images of 

two sequence years 
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5. DISCUSSION 

This study has demonstrated the applicability of DMSP/OLS 

NTL images for monitoring the status of urban expansion. With 

that in mind we further explored the relationship between 

DMSP/OLS NTL images and land subsidence measurements 

generated using ASAR data. Differently from previous studies 

where land subsidence is typically related to a single physical 

property of urban settings extracted from satellite imagery 

(building height, etc.), in this study several socio-economic urban 

properties are related to the satellite data showing relatively high 

correlation between the WLA generated from DMSP/OLS NTL 

images and all four variables. 

 

The temporal trend (Figure 4) suggest a constant increase of GDP, 

population and EPC over five years. The WLA values follow the 

trend of the Built-up areas with the one year time lag which may 

suggest that data on the built-up areas were collected during the 

construction, before the lights were in use.  A sudden urban 

expansion is observed in 2008 (Figure 4 and 5). At the same time 

a slight increase in the population rate is observed between 2007 

and 2008. 

 

A relatively strong positive correlation between land subsidence 

rate and DMSP/OLS NTL images in the period from 2005 to 

2010 (Table 4) was observed, which means urban expansion of 

each single year has an impact on land subsidence, and is in 

agreement with previous studies (Jie et al., 2007; Tang et al., 

2008) where building load and building density was shown to 

have the long-term impact on land subsidence in the same area. 

The impact tends to reduce as time goes on. According Jiao’s 

study (Jiao et al., 2017), once the building volume grows large 

enough, the impact of building load becomes stable. 

 

In the period ranging from 2005 to 2010, there is a rapid 

urbanization in Beijing. Especially before 2008, a large number 

of constructs were built for the Olympic Games held in Beijing 

in 2008.The increasing correlation coefficients between land 

subsidence rate and DMSP/OLS NTL image, with the exception 

of the years between 2007 and 2008 (Table 4 and 5), suggest that 

the change of urban expansion of two sequential years does have 

impact on land subsidence and the impact increases overtime. 

 

The low correlation between land subsidence and the change of 

urban expansion during the period between 2007 and 2008 may 

be due to lower WLA triggered by the reduced EPC during this 

period. In Figure 5, WLA showed a similar trend as EPC 

suggesting the impact or reduced EPC on the NTL brightness in 

DMSP/OLS imagery. In the period between 2007 and 2008, the 

difference value of EPC of these two years reach the minimum 

level of this six years, directly leading the impairment of intense 

DMSP/OLS NTL brightness and resulting in the low correlation 

between land subsidence and urban expansion of two sequential 

years. 

 

Although the results suggest that the DMSP/OLS NTL imagery 

are correlated with the socio-economic urban variable and that 

the same data can be used to monitor land subsidence, the current 

study has many uncertainties and it serves as a basis for further 

research. More information on data collection, additional 

variables and a longer time series analysis should be considered 

to be more conclusive. Some major uncertainties in this study are:  

 

1. Built-up area grew rapidly in 2009 and the growth rate 

decreased after 2009. The sudden change may have influence on 

land subsidence, however, this change may not be shown in 

DMSP/OLS NTL image. 

2. We utilized a regular rectangular study area to study the impact 

of urban expansion on land subsidence, however, there is a 

common problem in the study of geography, which is the scale 

effect. In the future study, scale effect should be discussed more 

to reveal the relationship between urban expansion and land 

subsidence in details. 

 

6. CONCLUSION 

This study has demonstrated time-series DMSP/OLS NTL 

images have a potential to estimate the urban expansion at 

regional scale (Tongzhou and Chaoyang district, Beijing). The 

method proposed in this paper considers urban expansion based 

on the satellite imagery and as such was used to monitor land 

subsidence derived from ASAR data where the impact of urban 

expansion on land subsidence was examined.  

 

The findings suggest a relatively high correlation between urban 

expansion of each single year and land subsidence rate, and the 

correlation tended to decrease over time, suggesting that urban 

expansion of each single year did have an impact on land 

subsidence, however, the influence tends to decrease in 

subsequent years. Besides, the correlation of differences of every 

two subsequent years in the period from 2005 to 2010 as land 

subsidence tends to increase over time, this suggests the increase 

impact of urban expansion of two sequential years on land 

subsidence. The change of urban expansion of two sequential 

years should be given higher priority to ensure building security 

and maintain common human lifestyle in the city. 
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