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ABSTRACT: 
 
The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial 
resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded 
climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated 
Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and 
rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, 
and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for 
interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30m resolution, 
inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias 
and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for 
each cluster using 20% validation data, co kriging was more suitable for spatialization of instantaneous temperature than other 
interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.  
 
 

*  Corresponding author 
 

1. INTRODUCTION 

As the global interest in climate change increases, and the 
development of computer technology and the construction of 
high-resolution geographical information accelerate, studies 
using high-resolution lattice climate data have been actively 
conducted in various fields such as environmental ecology, 
agricultural weather, geography, and atmospheric environment 
(Fick and Hijmans, 2017). High-resolution lattice climate data 
is used as an important basis for climate modeling, statistical 
analysis, ecosystem and habitat research and climate 
spatialization research (Lettenmaire et al., 2008). In addition, 
the need for lattice climate data is increasing in that it provides 
scientific and logical information on climate change policy 
decisions, including climate change impact assessment and 
adaptation policy.  
In order to generate high resolution lattice climate data, a 

climate map would be constructed via using satellite imagery or 
interpolation with observation data (Chervenak et al., 2003). 
Although satellite images with more detailed information can be 
acquired and applied easily than in the past, there are 
disadvantages as it is difficult to collect images suitable for the 
study period, the amount of data to be processed is large, and 
highly specialized knowledge is required (Ninyerola et al., 2007, 
Daly, 2006). 
When interpolating observational data, mechanical or geo-

statistical interpolation can be used. Although mechanical 
interpolation has the advantage of producing physically accurate 
meteorological data, it has limitations in that it requires high 
computing power and computation time (Jang et al., 2015). 
Statistical interpolation method has the advantage of being 

able to perform experiments on a general desktop computer and 

has a short computation time (Park and Jang, 2011), but 
uncertainty appears in the step of estimating a value in a grid 
which is not sampled outside the observation point (Jeong and 
Cho, 2011). Therefore, in order to overcome the problem of 
uncertainty when using a simple spatial interpolation technique, 
additional data such as remote sensing data, GIS thematic map, 
elevation and inclination have been actively applied in the 
interpolation process (Creutin et al., 1998, Daly et al., 2003). 
Especially in Korea, considering the high temporal and spatial 
variability of meteorological factors due to the complex terrain 
and monsoon (Baek and Jang, 2011), numerical studies have 
been reported on statistical interpolation using digital elevation 
model(DEM) or remote sensing data in order to overcome the 
limitations of uncertainty (Park, 2009, Park, 2008).  
In this study, the statistical interpolation method were adopted 

as it has the easiest access to the study considering the 
advantages and disadvantages of each method. Using the 
temperature and precipitation data and DEM, the seasonal 
temperature and precipitation map of South Korea were 
constructed.  
We applied Inverse Distance Weighting (IDW), kriging, and 

co-kriging, which are the most representative spatial statistical 
methods. In order to compare the accuracy of statistical 
interpolation, the results were compared with the local forecast 
model (LDAPS, 1.5 km resolution), which is provided by Korea 
Meteorological Administration.  
 

2. RESEARCH MATERIALS 

The materials used in this study are largely composed of lattice 
climate data of local forecast model, weather observation 
climate data and DEM. 
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2.1 Local Forecast Model (LDAPS) Lattice Climate Data 

In this study, lattice climatic data of the local forecasting 
model provided by KMA were used to compare and analyze the 
applicability of the temperature and precipitation distributions 
constructed via various spatial interpolation methods. The 
numerical forecast provided by KMA predicts future weather 
from the current atmospheric state using a numerical forecasting 
model calculated by a high-performance computer.  

The numerical forecasting model is a meteorological modeling 
of the Earth's meteorological system using aerodynamic and 
physical equations that govern atmospheric conditions and 
motion. In this process, a large amount of numerical operation 
is required within a limited time depending on the data type, 
size, and resolution. Therefore, it is necessary to create and 
execute the program using a special programming environment 
provided by a supercomputer designed for high performance 
numerical calculation.  

The data of the global, regional, and local forecasting models, 
three major numerical forecasting models of KMA, are provided 
with two types of data. The backscattering data is the most 
widely used numerical forecasting data and expresses the state 
of the atmosphere in three dimensions. Single-surface data 
represent the meteorological elements that occur only in a single 
layer of meteorological elements, such as precipitation and the 
variables defined in the soil layer.  

In this study, the single-surface data for the local forecasting 
model (LDAPS, Local Data Assimilation and Prediction 
System), performing 8 times a day by receiving the boundary 
field from the global model every 3 hours (00, 06, 12, 18UTC: 
36 hours Prediction, 03, 09, 15, 18UTC: 3 hour prediction), was 
used. It is composed of 70 layers up to about 40km in vertical 
direction and has 1.5 km spatial resolution. In this study, in 
order to calculate the most recent climate lattice data for 
temperature and precipitation, instantaneous temperature and 1 
hour cumulative precipitation among 78 variables for 2017 were 
used. In addition, considering the features of local forecast data 
we used 00UTC (Korean time 09:00) and 00hr data.  

Since Korea ordinarily determines the bifurcation point of the 
seasons as the position of the sun, seasonal comparisons were 
conducted for the vernal equinox, spring, autumn, and winter, 
which are determined according to the altitude of the sun during 
the 24 seasons (Jin and Park, 2015). The equinox are located in 
the equator. The sun is located on the Tropic of Cancer, and the 
highest altitude of the Sun is the highest. The comrades are 
located on the Tropic of Cancer. To best eliminate the 
meteorological factors such as wind, localized rain trough, that 
could affect to create a climate grid data, March 31, June 21, 
September 23, December 24 were chosen as the subject of study. 
The spatial mapping of instantaneous temperature has been 
carried out by considering the effects of wind, clouds and 
humidity. Each day was selected according to the quantitative 
criteria; average wind speeds of less than 2m / s, average cloud 
volume less than 3.5 and average relative humidity of less than 
80%. For spatial mapping of the mean cumulative precipitation 
over 1 hour, except for the local rainy days of March and 
December, the nearest day to the equinoxes and comrades was 
adopted, which rained national wide due to the effects of 
cyclone passing through Korea. 
 
2.2 Meteorological Observed DATA and DEM 

In this study, spatial interpolation was performed using 
Automated Surface Observing System (ASOS) and automated 
weather system (AWS) as terrestrial observation data provided 

by KMA. A total of four instantaneous temperatures and two 1-
hr accumulated rainfall lattice data were constructed with the 
time observation data from 595 observations (480 AWS, 95 
ASOS) in the study area, measured on March 21, June 21, 
September 23, and December 24, 2017 at 09:00 (Figure 1. (a)). 
For lattice climatic data production, about 80% of 595 
terrestrial observation data (478) were used, and the remaining 
117 data were used for verification (Table 1.).  
 

  03.31 06.21 09.23 12.24 

Temp 
(℃) 

Min -4.3 13.3 11 -4.4 
Max 12 27.1 24.5 14.9 
Mean 7.8 23.2 19 4.9 

Prep 
(mm) 

Min 0 NA NA 0 
Max 7.1 NA NA 20.7 
Mean 0.4 NA NA 2.4 

Table 1. Observed data of instantaneous temperature and 
precipitation in 2017. 
 

Geographical environmental variables related to temperature 
and precipitation characteristics generally include elevation, 
distance from shoreline, land cover, and slope orientation. 
Among these, the elevation has the greatest effect on the 
variability of climate factors, with the temperature dropping by 
0.6 ° C as altitude increases by 100 m in the troposphere (Baek 
and Jang, 2011). Therefore, the top factor influencing the 
temporal and spatial variation of climate factors is the elevation 
above sea level. The DEM data used in the study is the Shuttle 
Radar Topography Mission (SRTM) DEM provided by 
EarthExplorer and the spatial resolution is 30 m (1 arc second). 
(Figure 1(b)) 
 

 
Figure 1. (a) Location of AWS and (b) DEM of study area. 
 

3. RESEARCH METHOD 

3.1 Cluster Analysis 

South Korea, the subject of this study, is characterized by the 
large climate difference between south and north and east and 
west due to the long north-south direction and the mountains 
developed from north to south (Park, 2014). Due to these 
topographical factors, various studies have been carried out on 
the features of the temperature and precipitation of Korea 
considering the effects of altitude and slope.  
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 Cluster1 Clsuter2 Cluster3 

Spatial 
distribution 

   

Feature High Middle Low 
Slope(°) 21.4 13.5 5.1 

Elevation(m) 942 387 60 
Number 24 98 473 
Training 20 79 379 

Test 4 19 94 
Table 2. Cluster analysis with elevation and slope 
 

In this study, hierarchical cluster analysis of observation data 
was performed to analyze the differences of result according to 
altitude and slope (Table 2.). Ward connection method, one of 
the hierarchical analysis used in this study, is to grouping 
together the data in each stage of cluster analysis, by measuring 
the error sum of squares between the mean and the data of the 
cluster thereby to merge so as to minimize its error sum 
value (Punj and Stewart, 1983).  

As a result of clustering of observation data with altitude and 
slope as variables, a total of three significant clusters were 
derived. After that, K-average algorithm was used to set the 
cluster-specific labels, and 80% training set for interpolation 
and 20% test set for validation were randomly selected in each 
cluster. 
 
3.2 Statistical Interpolation 

3.2.1 Inverse Distance Weighting (IDW) 
One of the interpolation methods, inverse distance weighting 

(IDW), is a technique that reflects the influence of observations 
as the closer the distances of known values are located when 
estimating the values for unobserved points. That is, it is based 
on the assumption that the weight decreases exponentially as the 
distance between the unobserved point and the neighboring 
observation point increases. The basic formula for IDW is: 
 

    (1)  
 
where  = the predicted value at position   

  = weight for observation point  
 = observation value at observation point   

 = weight 
 
Since the weight is inversely proportional to the distance, its 
value decreases as the distance increases. Finally, it can be 
expressed by the following equation: 
 

    (2) 
 

where  =distance between  and   
 =degree of change in weight according to distance 

 
If  is 0, the result of IDW is equal to the arithmetic mean, and 

when it is increased to infinity, it becomes equal to the 
estimated result of the Thiessen method (Hwang and Ham, 
2013). 
 
3.2.2 Kriging 

One of the commonly used spatial interpolation methods is to 
derive an unknown value as a linear combination of random 
variables with spatial correlation. By considering the correlation 
between the distance from the measured value and the 
neighboring values, it statistically measures the variability of 
the distance between the measured values. And then, based on 
the variogram, it performs interpolation. Uni-variate kriging 
includes simple kriging, ordinary kriging, universal kriging, and 
block kriging. 
  In this study, ordinary kriging was used to minimize the 
variance of error. Ordinary kriging assumes that the mean is 
constant locally based on the estimated point. Its estimates at 
any lattice point is expressed: 
 

 (3) 
 
If the sum of the kriging weights is equal to 1, then the local 
mean value can be eliminated and the normal kriging estimate 
is: 
 

  (4) 
 
Here, the ordinary kriging weights can be estimated by 
minimizing the estimated variance (Hwang and Ham, 2013). 
 
3.2.3 Co-Kriging 

Co-kriging is a method designed to compensate for the 
disadvantages of uni-variate kriging, which can improve 
predictability at unsampled points through multivariate kriging 
when additional data are available, along with the data under 
consideration. Multivariate kriging techniques include co-
kriging, kriging with an external drift (KED), and simple 
kriging with varing local means (SLKM).  

Uni-variate kriging performs interpolation using auto-
correlation of the same variable with only one variable value, 
while co-kriging interpolates by linear combination of two or 
more variables. In co-kriging, a variable to be predicted is 
called a peripheral variable, and non-peripheral variables are 
called a secondary variables.  
 

   (5) 
 
In this case,  

 = the number of peripheral variable 
= the total number of the used peripheral variable  
 = the total number of used secondary variables 

 = th secondary variables 
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 = total number of th secondary variables 
 = weight 
 = the position of each data 

 
The total number of variables and  
data are used to estimate the surrounding values (Jang et al., 
2015). 
 
3.3 Verification 

The bias and mean square error (RMSE) between the 
instantaneous temperature, 1-hr cumulative precipitation values 
of the lattice data and 120 validation points corresponding to 
20% were used to verify the distributions generated by each 
spatial interpolation method. In particular, to verify the 
interpolation accuracy in each cluster, the bias and RMSE of the 
spatial interpolation results and LDPAS gridded data from 
KMA in each cluster were statistically compared. 

The mean absolute error (MAE), commonly used for deviation 
measurements, is an estimate of the uncertainty of the estimated 
value as the average of the absolute values of the difference 
between the estimated and actual values. The root mean square 
error (RMSE), a measure often used to express precision, is the 
square root of the arithmetic mean of the square sum of the 
difference (residual) between the estimated value and the actual 
value (Walther and Moore, 2005); 
 

Bias(MAE)      (6) 

RMSE     (7) 
 
where  E = estimates  
 O = observations  
 n = total number of samples 
 

In addition, the similarity of spatial pattern between the results 
of the geo-statistical interpolation and the weather forecasting 
model lattice climatic data of KMA was analyzed by comparing 
the spatial patterns of each watershed. 
 

4. CONCLUSION AND DISCUSSIONS 

In the study of the instantaneous temperature distribution 
features on March 21th, June 21th, September 23th, and 
December 24th in 2017, IDW, kriging and co-kriging were 
applied seasonally to produce a total of 12 lattice temperature 
data (Table 3., Figure 2.).  

As a result, the range between the minimum and the maximum 
value of the instantaneous temperature derived from statistical 
interpolation decreased somewhat than the observation data. 
The mean values were almost similar to the observed data. The 
decrease in the range between the minimum and maximum 
values indicates that the spatial continuity of estimates at the 
verification points have been increased due to the statistical 
spatial interpolation. 
 

Temperature(℃) 03.31 06.21 09.23 12.24 

Obs Max-Min 13.2 11.6 11.9 16.7 
Mean 7.9 23.2 19.6 4.4 

CKG Max-Min 8.0 8.7 8.2 13.0 
Mean 7.8 23.1 19.7 4.4 

IDW Max-Min 8.9 10.1 8.0 12.2 
Mean 7.9 23.1 19.6 4.4 

KG Max-Min 6.6 6.4 6.5 12.8 
Mean 7.8 23.2 19.7 4.5 

Table 3. Comparison of temperature estimated by interpolation 
and observed in 2017. Obs: Observed, CKG: co-kriging, KG: 
kriging 
 

In order to statistically analyze the results of each interpolation 
technique, bias and RMSE between the observation points of 
the verification points were derived (Table 4.). As all of the 
interpolation methods showed good results, no significant 
difference was observed between them. Therefore, bias and 
RMSE of each cluster were derived with the estimates from 
statistical spatial interpolation and LDAPS gridded data, and 
the observation values. When comparing the deviation of each 
cluster, it can be seen that as the altitude and the slope decreases, 
the deviation value becomes smaller.  
 

Temperature(℃) 03.31 06.21 09.23 12.24 

C1 

CKG 
Bias 4.62 3.03 2.58 1.74 

RMSE 5.03 3.58 3.26 2.37 

IDW 
Bias 4.18 3.09 2.34 1.72 

RMSE 4.79 3.49 3.01 2.35 

KG 
Bias 5.71 3.98 2.65 1.72 

RMSE 5.96 4.38 3.29 2.32 

F 
Bias 3.73 2.05 2.73 1.03 

RMSE 3.86 2.48 2.83 1.67 

C2 

CKG 
Bias 0.91 1.27 1.29 1.10 

RMSE 1.21 1.66 1.69 1.34 

IDW 
Bias 0.97 1.23 1.15 1.03 

RMSE 1.27 1.63 1.57 1.29 

KG 
Bias 1.13 1.23 1.22 1.12 

RMSE 1.43 1.64 1.59 1.39 

F 
Bias 0.96 1.33 2.65 1.11 

RMSE 0.74 1.74 2.91 1.44 

C3 

CKG 
Bias 0.62 0.85 0.92 0.87 

RMSE 0.83 1.37 1.62 1.30 

IDW 
Bias 0.69 0.82 1.15 1.04 

RMSE 1.04 1.09 2.33 1.44 

KG 
Bias 0.71 0.81 1.09 0.97 

RMSE 0.98 1.04 2.30 1.36 

F 
Bias 0.79 1.34 2.58 1.12 

RMSE 1.12 1.61 2.87 1.43 
Table 4. Cluster classification and comparision of temperature 
estimated by interpolation and observed in 2017.  C1: cluster1, 
C2: cluster2, C3: clsuter3, CKG: co-rigging, KG: kriging, F: 
LDAPS forecast gridded data 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-703-2018 | © Authors 2018. CC BY 4.0 License.

 
706



 2017.03.31 2017.06.21 2017.09.23 2017.12.24 
C

ok
ri

gi
ng

 

    

ID
W

 

    

K
ri

gi
ng

 

    

F
or

ec
as

t 

    

Figure 2. Lattice temperature data constructed via Co-kriging, IDW, Kriging and LDAPS gridded data (Forecast)
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Accuracy of lattice temperature data by interpolation method 
varied according to the season; high-altitude cluster had higher 
accuracy on winter season than other seasons, but low-altitude 
clusters had higher accuracy in spring than winter. The 
summers and autumn seasons were over-predicted overall over 
spring and winter seasons. As a result, it can be concluded that 
the bias of the results via co-kriging and IDW interpolation 
methods are smaller than kriging, which indicates it is 
advantageous to calculate lattice temperature data. 

As with the bias, overall RMSE value from the results of IDW 
and co-kriging were smaller than that of kriging, which 
indicates that IDW and cokriging were useful for constructing 
lattice temperature data.  

When the results of co-kriging and IDW were statistically 
verified, both bias and RMSE were small, making comparison 
somewhat difficult. However, when the spatial patterns of the 
large watershed were compared based on the LDAPS lattice 
climatic data, it showed that co-kriging reflects local spatial 
distribution characteristics better than IDW.  

In particular, in the case of the East Sea (Han River East Sea 
and Nakdong River East Sea), the temperature increases rapidly 
as the altitude decreases with the mountain range. Kriging did 
not reflect this pattern change, and the distribution pattern of 
IDW showed a very rapid change, which does not reflect a 
realistic climate patterns. It can be concluded that the co-
kriging is able to estimate the spatial distribution by using 
altitude as an additional variable, which derives more accurate 
results. 

Next, each lattice data for 1-hr cumulative precipitation at 
09:00 on March 31th, and December 24th, in 2017 were 
produced (Figure 3., Table 5.). First, the ranges between the 
minimum and maximum values were somewhat smaller than 
that of the observed data, similar to the results of lattice climate 
data on temperature. This aspect well describes the feature of 
statistical interpolation which spatial continuity of the estimate 
at the verification point increases as a result of. 
 

Temperature(℃) 03.31 12.24 

Obs 
Max-Min 4.74  15.88  

Mean 0.65  1.97  

CKG 
Max-Min 3.65  10.47  

Mean 0.74  2.02  

IDW 
Max-Min 3.86  9.81  

Mean 0.73  2.04  

KG 
Max-Min 3.14  9.19  

Mean 0.71  1.95  
Table 5. Comparision of precipitation estimated by 
Interpolation and observed in 2017. Obs: Observed, CKG: co-
kriging, KG: kriging 
 

Similarly to the pattern of temperature, bias and RMSE of 
precipitation became smaller as the altitude decreased. 
However, in December 2017, the bias and RMSE at low 
altitudes were showed the highest value due to the high rainfall 
in the southwestern plains (Table 6.). Comparing the deviation 
of precipitation by each interpolation method, IDW showed 
smaller results than that of kriging or co-kriging.  

In March, there was a significant amount of rainfall in eastern 
Jeju Island, south of the armistice line, and along the Sobaek 
mountain vein. In December, on the other hand, precipitation 

was clearly distinguished near Jeju Island, Nonsan and Honam 
Plain.  
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Figure 3. Lattice 1-hr cumulative precipitation data constructed 
via Co-kriging, IDW, Kriging and LDAPS gridded data 
(forecast) 
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In the case of precipitation, unlike the temperature, the results 
of IDW well described the characteristics of precipitation, 
which shows a rapid change and small regional continuity, 
rather than the other two interpolation methods. Co-kriging and 
kriging did not show any significant differences in distribution 
pattern and statistical test results.  

Considering the statistical test result and the precipitation 
distribution pattern of each interpolation method, it is 
considered that other topographical and climatic factors such as 
distance from altitude coastline, slope direction, and trough of 
low pressure would affect the rainfall distribution pattern.  
 

Temperature(℃) 03.31 12.24 

C1 

CKG 
Bias 0.50 0.83 

RMSE 0.63 1.54 

IDW 
Bias 0.36 0.72 

RMSE 0.45 1.40 

KG 
Bias 0.48 0.82 

RMSE 0.66 1.61 

F 
Bias 0.83 0.75 

RMSE 1.15 1.53 

C2 

CKG 
Bias 0.41 0.50 

RMSE 0.50 1.10 

IDW 
Bias 0.32 0.54 

RMSE 0.41 1.18 

KG 
Bias 0.43 0.61 

RMSE 0.53 1.39 

F 
Bias 0.82 1.58 

RMSE 1.08 3.26 

C3 

CKG 
Bias 0.33 1.03 

RMSE 0.58 1.90 

IDW 
Bias 0.27 1.06 

RMSE 0.55 1.87 

KG 
Bias 0.33 1.04 

RMSE 0.59 1.83 

F 
Bias 0.28 1.65 

RMSE 0.76 3.15 
Table 6. Clusteral classification and comparision of 
precipitation estimated by Interpolation and observed in 2017. 
C1: cluster1, C2: cluster2, C3: clsuter3, CKG: co-kriging, KG: 
kriging, F: LDAPS forecast gridded data.  
 

This study proposed a method for constructing the gridded 
climate data in South Korea by comparing the results of 
statistical interpolation and mechanical interpolation. However, 
due to the characteristics of the LDAPS model data, there is a 
limitation in that only the spatialization of the instantaneous 
temperature and the 1-hr cumulative precipitation has 
proceeded.  

Therefore, future studies will be conducted to construct and 
compare the lattice climatic data with the gridded climate data 
from WorldClim in the same time range. In addition, based on 
the lattice climatic data and WorldClim data, South Korea's 
bio-climate region will be constructed and compared, in order 
to evaluate the applicability of the map. 
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