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ABSTRACT: 

 

Wetlands provide a number of environmental and socio-economic benefits such as their ability to store floodwaters and improve water 

quality, providing habitats for wildlife and supporting biodiversity, as well as aesthetic values. Remote sensing technology has proven 

to be a useful and frequent application in monitoring and mapping wetlands. Combining optical and microwave satellite data can help 

with mapping and monitoring the biophysical characteristics of wetlands and wetlands` vegetation. Also, fusing radar and optical 

remote sensing data can increase the wetland classification accuracy.  

In this paper, data from the fine spatial resolution optical satellite, Sentinel-2 and the Synthetic Aperture Radar Satellite, Sentinel-1, 

were fused for mapping wetlands. Both Sentinel-1 and Sentinel-2 images were pre-processed. After the pre-processing, vegetation 

indices were calculated using the Sentinel-2 bands and the results were included in the fusion data set. For the classification of the 

fused data, three different classification approaches were used and compared. 

The results showed significant improvement in the wetland classification using both multispectral and microwave data. Also, the 

presence of the red edge bands and the vegetation indices used in the data set showed significant improvement in the discrimination 

between wetlands and other vegetated areas. The statistical results of the fusion of the optical and radar data showed high wetland 

mapping accuracy, showing an overall classification accuracy of approximately 90% in the object-based classification method.  

For future research, we recommend multi-temporal image use, terrain data collection, as well as a comparison of the used method with 

the traditional image fusion techniques. 

 

 

1. INTRODUCTION 

Wetlands provide a number of environmental and socioeconomic 

benefits such as their ability to store floodwaters and improve 

water quality, providing habitats for wildlife and supporting 

biodiversity, as well as aesthetic values. The loss of wetlands 

which is considered to be more than 50% since 1900, has gained 

considerable attention over the past years. A major cause of 

wetland loss is considered to be the conversion to agricultural 

land due to economic and population growth (Berry, Smith et al. 

2016). Mapping wetlands have always been of great need since 

societies depend on natural resources. Wetlands include a range 

of habitats from permanently flooded areas to seasonally wet 

areas, both cover with a portion of vegetation. The wetter the 

wetland area is, the easier it identifies both on the ground and 

through remote sensing methods. 

 

Remote sensing data such as aerial photo interpretation, satellite 

imagery or other geospatial data, has proven to be a useful and 

frequent application in monitoring and mapping wetlands. In the 

past, aerial photographs have been traditionally used for mapping 

wetlands, but in the past two decades, multispectral and SAR 

(Synthetic Aperture Radar) satellite remote sensing data have 

been effectively used for mapping and monitoring wetlands. 

Multispectral data has been used for classifying wetlands 

generally through indices, such as Normalized Difference 

Vegetation Index (NDVI) (Kayastha, Thomas et al. 2012), Land 

Surface Water Index (LSWI) (Dong, Wang et al. 2014), 

Normalized Difference Water Index (NDWI) (Dvorett, Davis et 
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al. 2016), Soil and Atmosphere Resistant Vegetation Index 

(SARVI) (Huete, Liu et al. 1997), etc. SAR data which are 

considerably different from optical data, are being collected by 

active sensors that operate at longer wavelengths and provide 

different information. C-band operating at 3.75 to 7.5 cm 

wavelength has been widely used in wetland mapping (Baghdadi, 

Bernier et al. 2001, Mleczko and Mróz 2018). The use of SAR 

data (C-band) has provided overall accuracy of 59% to 86% 

(Baghdadi, Bernier et al. 2001), while the use of optical sensors 

(Landsat TM) had difficulties separating upper salt marsh from 

upland forest (Civco, Hurd et al. 2006). Thus, the 

combination/fusion of both sensors can provide sufficient 

information for accurately extracting wetlands from the other 

land covers (Dabrowska-Zielinska, Budzynska et al. 2014). 

 

Sentinel-2A and Sentinel-2B, are a part of the European 

Copernicus program created by the European Space Agency 

(ESA) (Sentinel). Sentinel-2 Multispectral Instrument (MSI), is 

considered to be the follow-up mission to the Landsat 

instruments, intended to provide continuity of remote sensing 

products (Malenovský, Rott et al. 2012). In comparison with the 

latest Landsat OLI/TIRS, Sentinel-2 has better spatial resolution, 

better spectral resolution in the near infrared region, three 

Vegetation Red Edge bands with 20-meter spatial resolution, but 

does not offer thermal data nor panchromatic band. Sentinel-2 

MSI sensor compared to existing satellite sensors require 

adjustment to allow extending actual time series (D'Odorico, 

Gonsamo et al. 2013). Sentinel-2 offers satellite images with a 
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resolution from 10 to 60 meters (Drusch, Del Bello et al. 2012). 

The Visual and NIR bands have 10 m spatial resolution, four 

Vegetation Red Edge and two SWIR bands have 20 m spatial 

resolution, while the Coastal aerosol, Water vapour, and Cirrus 

bands have 60 m spatial resolution. However, considering the 

four fine spectral resolution bands, panchromatic band can be 

produced and used in the Sentinel-2 image fusion for producing 

ten fine spatial resolution bands (Selva, Aiazzi et al. 2015).  

Sentinel-1 is an imaging radar satellite at C-band (⁓5.7 cm 

wavelength) consisting of a constellation of two satellites, 

Sentinel-1A and Sentinel-1B, also part of the European 

Copernicus program created by the ESA. Their main cover 

applications are: monitoring sea ice zones and the arctic 

environment; Surveillance of marine environment; Mentoring 

land surface motion risks; Mapping of land surfaces: forest, water 

and soil, agriculture; Mapping in support of humanitarian aid on 

crisis situation (Attema, Davidson et al. 2008, Torres, Snoeij et 

al. 2012). 

 

In this study, a fusion of Sentinel-1 and Sentinel-2 satellite 

images has been made for wetland classification. For that 

purpose, one Sentinel-1 and one Senitnel-2 datasets have been 

downloaded from the Copernicus Open Access Hub. Before 

fusing the images from the different sensors, both Sentinel-1 and 

Sentinel-2 images were pre-processed. The pre-processing of the 

images includes atmospheric correction and increasing of the 

spatial resolution from 20 meters to 10 meters of the Sentinel-2 

red-edge and shortwave infrared bands, and radiometric 

calibration, speckle reduction and terrain correction of the 

Sentinel-1 SAR image. Furthermore, different classification 

methods have been applied to the common area of the images.  

Balikdami wetland located in the Anatolian part of Turkey was 

chosen as a study area. The area of the wetland Balikdami is 

approximately 30 km2. 

  

2. METHODS 

2.1  Study Area and Data 

Sakarya river is the third longest river in Turkey with 824 km 

length. Balikdami is one of the wetlands formed along Sakarya 

riverbed. Located in the Anatolian part in Turkey, Balikdami is 

unique wetland containing rich flora and fauna and more than 235 

bird species. The study area in this paper contains four other 

wetland areas that were taken into consideration. The image used 

for classification cover area of approximately 2.200 km2. It is 

known that this area has been losing its value since the 1980s. 

 

 
Figure 1. Sentinel-2 image of the study area (RGB – 8a, 4 ,5) 

 

Figure 1 shows the study area used in this paper. Also, Balikdami 

is located in the upper middle part of the Sentinel-2 image 

marked with green line, while the other wetland areas are marked 

with yellow colour where. Beside wetlands, agricultural fields, 

sedimentary rocks, barren lands, bare lands, and open water areas 

can be found. 

 

For the classification, both Sentinel-1 and Sentinel-2 data were 

used. For that purpose, the images were downloaded from the 

Copernicus Data Hub. The images were taken in the summer 

period when the vegetation in the wetland areas is dense and 

green which makes it difficult to separate it from other vegetated 

areas. Sentinel-1 image was taken on 13 August 2017, while 

Sentinel-2 was taken on 10 August 2017.  

 

2.2 Pre-processing 

Senintel-1 images need pre-processing before its application. 

After the download of the image, radiometric and terrain 

calibration, as well as speckle reduction has been performed.  The 

product has been filtered with Lee Sigma filer 5x5 window size. 

For the terrain correction a Range Doppler Terrain Correction 

with a digital elevation model of 30 m has been used. The pre-

processing has been performed in the SNAP software by ESA 

using the Sentinel-1 toolbox. The digital number values have 

been converted into backscattering values in decibel (dB) scale 

following Equation 1. 

 

β°
db

=10* log
10

(β°)                            (1) 

 

Where 𝛽° is the digital number value of the image, and 𝛽°𝑑𝑏 is 

the backscattered value in dB. 

The pre-processing of Sentinel-2 product include atmospheric 

correction and increasing the spatial resolution of the 20-m bands 

to 10-m. In order to increase the spatial resolution of the 

Vegetation Red-Edge and Short Wave infrared bands, pan-

sharpening techniques should be performed. However, the main 

pan-sharpening approaches were originally developed for image 

fusion with a single fine band (Wang, Shi et al. 2016). Sentinel-

2 provides four 10-m bands that are highly correlated with the 

20-m bands. In this study, a single panchromatic band by 

averaging all fine multispectral bands was produced (Selva, 

Aiazzi et al. 2015, Wang, Shi et al. 2016). For the pan-

sharpening, a Hybrid Fusion Technique – Wavelet Principal 

Component (WPC) was used. For the quantitative analyses of the 

pan-sharpened image, Wald`s protocol was followed which the 

most widely used one for validation of pan-sharpening methods 

(Dou 2018).  For the quantitative analyses, four indices were 

used: correlation coefficient (CC) which provides correlation 

between the fused and the reference image, Universal Image 

Quality Index (UIQI) which uses covariance, variance, and 

means of fused and reference image (Pohl and Van Genderen 

2016), Relative Average Spectral Error (RASE) (Ranchin and 

Wald 2000), and Spectral Angle Mapper (SAM), curtail for the 

case under concern (Kaplan et al. 2018). 

 

2.3 Methods 

Radar image backscatter values gives valuable information for 

land cover. Both pre-processed VV and VH Sentinel-1 

polarizations were included in the dataset as well as their 

different combinations such as their average value. 

Using the Sentinel-2 bands, several vegetation indexes were 

calculated: NDVI, NDWI, the Sentinel-2 Red-Edge Position 

Index (S2REP) (Frampton, Dash et al. 2013), and the Modified 

Soil Adjusted Index (MSAVI). All of the calculated indices were 

included in the dataset. 
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NDVI= 
b8+b4

b8+b4
                               (2) 

 

NDWI= 
b3 - b8

b3 - b8
                               (3) 

 

S2REP=705+35* [
 (  

b7+b4
2

) -b5

b6-b5
]                    (4) 

 

MSAVI= 
(b8-b4)*(1+L)

b8+b4+L
                         (5) 

 

where the soil adjustment value L = 0.5. 

The indices were calculated using the pan-sharpened Senitnel-2 

bands with a spatial resolution of 10-m. The 60-m Sentinel-2 

bands were not included in the dataset. The dataset contains 17 

bands that were stacked into single image (Clerici, Valbuena 

Calderón et al. 2017): 

 

- Sentinel-1: VV, VH, (VV+VH)/2 

- Sentinel-2: Blue, Green, Red, Red-Edge-1, Red-Edge-

2, Red-Edge-3, NIR, Red-Edge-4, SWIR-1, SWIR-2 

- Sentinel-2 indices: NDVI, NDWI, S2REP, MSAVI. 

 

Both unsupervised and supervised classification were performed 

on the dataset. The unsupervised classification was used in order 

to determine the number of classes that can be distinguished in 

the study area, while the supervised classification was used for a 

visual comparison with the object-based classification. 

 

The image was integrated into eCognition software for an object-

based classification. The classification was performed using 

three main steps: image segmentation, generation of an image 

object hierarchy, and classification. The image segmentation was 

done using multi-resolution segmentation, where pixels are 

grouped into objects (Baatz & SCHÄPE, 2010). In this study, 

importance was given to VH, NIR, and SWIR bands since these 

areas of the electromagnetic spectrum are sensitive to wettnes. 

The scale parameter determines the maximum possible change of 

heterogeneity, and it is indirectly related to the size of the created 

object. Compactness describes the closeness of pixels clustered 

in an object by comparing it to a circle. The parameters used in 

this study are given in Table 1. 

 

Segmentation Settings 

Layer Weights  1;1.2;1;1;1;1;1;1;1.2;1;1;1;1.2;1;1;1;1 

Scale Parameter 50 

Composition of homogeneity criterion 

Shape 0.2 

Compactness 0.8 

 

Table 1. Multi-resolution segmentation settings 

 

Afterwards, sample of nine classes were collected using Sentinel-

2 image: Wetlands - representing low vegetated wetlands, 

Vegetated wetlands, dense vegetated wetlands -  representing 

marsh with high vegetation, agricultural fields - 1 – representing 

high vegetated fields, agricultural fields - 2 – representing low 

vegetated fields, sedimentary rocks, barren land, and bare land. 

The collected samples were also identified in high-resolution 

imagery using Google Earth. 

The estimation of the classification accuracy assessment was 

performed based on 129 random points that were used for 

calculating user and producer accuracy, overall accuracy and 

kappa statistics.  

 

3. RESULTS 

3.1 Sentinel-2 pan-sharpening  

The results from the pan-sharpening over the 20-m Sentinel-2 

bands are presented in Figure 2 and Table 2. Both qualitative and 

quantitative analyses gave satisfactory results of the performed 

pan-sharpening using the WPC method. It can be easily noticed 

from Table 1 that all of the quantitative indices calculated were 

close to the ideal values.  

 

(c) (d)

(a) (b)
0 0.5 10.25

Km

®

0 0.5 10.25
Km

®

 
Figure 2. Sentinel-2 Pan Sharpening results: a) 20 m (RGB – 

11,8a,5); b) 10 m (RGB – 11,8a,5); c) 20 m (RGB – 5,11,8a); d) 

10 m (RGB – 5,11,8a) 

 

 CC UIQI RASE SAM 

Ideal 1 1 0 0 

WPC 0.966 0.956 2.70 0.026 

 

Table 2. Quantitative analyses of the Sentinel-2 Pan-sharpening 

 

3.2 Sentinel-1 and Sentinel-2 classification 

The aim of the unsupervised classification was to determine the 

possible number of classes within the wetland area and the 

classes that wetlands get mixed up with. The results showed that 

the wetland area in this study, contains four main classes, low 

vegetated wetlands, high vegetated wetlands, dense vegetated 

wetlands, and open water bodies. The results of the 9-classes 

unsupervised classification showed that low vegetated wetlands 

get mixed with bare land with small vegetation on the mountains, 

and wetlands with dense vegetation get mixed with semi 

vegetated areas in the mountains and some agricultural fields, as 

well as with open water areas. 

 

After the determination of the number of classes, a supervised 

classification was performed on the Sentinel dataset. A visual 

inspection of the supervised classification results versus a natural 

color composite Sentinel-2 image was made. Although 

supervised classification results improved the unsupervised 

classification results, still part of the bare land and the low 

vegetated fields were mixed with the low vegetated wetlands, and 
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part of the high vegetated agricultural fields were mixed with the 

high vegetated wetlands which can be seen at Figure 3. 

 

Legend
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®

 
 

Figure 3. Supervised Classification results 

 

For the object based classification samples from nine classes 

were collected; wetlands - representing low vegetated wetlands, 

Vegetated wetlands, dense vegetated wetlands -  representing 

marsh with high vegetation, agricultural fields - 1 – representing 

high vegetated fields, agricultural fields - 2 – representing low 

vegetated fields, sedimentary rocks, barren land, and bare land. 

After the classification visual inspection was made and it was 

concluded that some agricultural fields that were not classified in 

neither of the two assigned agricultural classes, thus taking an 

advantage of the geometry of the objects, an additional condition 

for a Rectangular Fit of 0.6 was set and new class of agricultural 

fields was created. The results are presented in Appendix A for 

the full study area, Figure 4 for the Balikdami wetland area, and 

the statistical results are presented in Table 2. The overall 

accuracy was estimated to be more than 89%, while the kappa 

coefficient was 0.88. All of the wetland classes had both producer 

and user accuracy between 85% and 92.3%. The confusion 

matrix and more detailed information about the accuracy 

assessment are given in the Appendix A, Table 3. 

 

 Class 
User 

Accuracy 

Commission 

Error 

Producer 

Accuracy 

Omission  

Error 

 (%) (%) (%) (%) 

Wetlands 92.3 7.7 85.7 14.3 

Water 100 0 100 0 

Agri-1 95.5 4.5 95.4 4.6 

Veg_wetland 90.0 10 100 0 

Rocks 90.9 9.1 90.9 9.1 

Dense_wet 87.5 12.5 87.5 12.5 

Barren Land 87.5 12.5 82.3 17.7 

Bare Land 95.2 4.8 80.0 20 

Agri-2 100 0 75.0 25 

Agri-3 72.7 27.3 100 0 

Overall accuracy 89.15%   

Kappa 0.88   

 

Table 2. Classification accuracy assessment 
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Figure 4. a) Data Set (RGB – NIR, VH, Red); b) Classification 

results of Balikdami wetland 

 

4. CONCLUSION  

The complex structure of wetlands, makes it difficult to classify 

wetlands using remote sensing data. Both multispectral and radar 

data have advantages and disadvantages in wetland mapping and 

monitoring. Combining these different sensors and using their 

advantages, in this paper, we fused Sentinel-1 and Sentinel-2 and 

achieved overall accuracy of more than 89%. Still, some of the 

wetlands areas were mistakenly classified as agricultural areas 

which could be fresh watered fields. However, this allegation 

needs to be confirmed by ground control points. 
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APPENDIX A 

Table 3. Confusion matrix and classification accuracy assessment 
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Wetlands 12 0 0 0 0 0 0 0 1 0 13 85.7 14.3 

Water 0 3 0 0 0 0 0 0 0 0 3 100 0 

Agriculture-1 0 0 21 0 0 1 0 0 0 0 22 95.4 4.6 

Vegetated Wetlands 0 0 1 9 0 0 0 0 0 0 10 100 0 

Sedimentary Rocks 0 0 0 0 10 0 1 0 0 0 11 90.9 9.1 

Dense vege wetlands 1 0 0 0 0 7 0 0 0 0 8 87.5 12.5 

Barren Land 0 0 0 0 1 0 14 1 0 0 16 82.3 17.7 

Bare Land 1 0 0 0 0 0 0 20 0 0 21 80 20 

Agriculture-2 0 0 0 0 0 0 0 0 3 0 3 75 25 

Agriculture-3 0 0 0 0 0 0 2 4 0 16 22 100 0 

Total 14 3 22 9 11 8 17 25 4 16 129   

User Accuracy (%) 92.3 100 95.5 90 90.9 87.5 87.5 95.2 100 72.7 
Overall accuracy 

89.15% 

Commission Error 

(%) 
7.7 0 4.5 10 9.1 12.5 12.5 4.8 0 27.3 Kappa 0.88 

 

 
 

Figure 5. Classification results of the full study area 
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