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ABSTRACT: 

 

The Rational Function Model（RFM）is a non-linear model. Usually, the RFM-based satellite image block adjustment uses the 

Taylor series to expand error equations, and then solves the linear model.   Theoretically, linearization of a non-linear model affects 

the accuracy and reliability of the adjustment result. This paper presents linear and non-linear methods for solving the RFM-based 

block adjustment,and takes ZiYuan3(ZY-3) satellite imagery block adjustment as an example, using same check points to assess the 

accuracy of the two methods. In this paper, a non-linear least square method is used for solving the RFM-based block adjustment, 

which expands a solution to the block adjustment. 

 

 

1. Introduction 

Rational function model（RFM） is a general geometric model 

used by most remote sensing satellites nowadays. RFM is a high 

precision approximation to a rigorous imaging geometry model. 

It can be applied to any space sensor platform. 

 

The RFM-based satellite image block adjustment uses the 

Taylor series to expand error equations, and then solves the 

linear model. , and a two-dimensional affine transformation for 

the compensation of imagery has been applied in most previous 

researches. RFM is one of non-linear models and the accuracy 

and reliability of the RFM-based block adjustment are effected 

by expanding an error equation into a linear model in theory. 

 

In this article, a linear least square method and a non-linear 

least square method for the RFM-based block adjustment are 

described. This paper mainly focuses on the non-linear least 

square method for the RFM-based block adjustment. A non-

linear least square regression can be used to solve the error 

equation through a residual equation which is based on ground 

control points. Levenberg-Marquardt (LM) algorithm with 

gradient descent computation is aimed to get the best solution. 

 

In addition, the block adjustment of ZY-3 satellite imagery is 

used as an example to state the solution of the linear and the 

non-linear block adjustment. The linear and the non-linear 

block adjustment are presented under same ground control 

points. The accuracy result and advantage of comparison 

between the linear and the non-linear method through public 

check points will be presented. 

  

In this paper, the solution of block adjustment of satellite 

images proceeded by the non-linear block adjustment is given, 

which expands the data processing method on the block 

adjustment of satellite images.  

 

2. Rational function model 

Rational Function Model(RFM) is a kind of universal sensor 

model. Its essence is to describe and replace the rigorous 

imaging process more closely through a more complex 

mathematical model. A direct correspondence between the 

object space coordinates and the coordinates of the image 

points is established. The RFM model generally uses the RPC 

parameter (Rational Polynomial Coefficients) to represent. The 

RPC parameter generally has 80 coefficients. As an alternative 

to a physical camera model, the rational function describes the 

transformation between the image and object spaces. The 

rational function transforms a point in the object space (P, L, H) 

into its corresponding image point (C,R) through a ratio of the 

two polynomials shown in Equation (1): 
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where    Cn, Rn = normalized image-space coordinates 

Ln, Pn, Hn = normalized object-space coordinates 

 

Given the object-space coordinates (P,L,H), where P is geodetic 

latitude, L is geodetic longitude, and H is height above the 

ellipsoid, and the latitude, longitude, and height offsets and 

scale factors (LAT_OFF, LONG_OFF, HEIGHT_OFF, with 

LAT_SCALE, LONG_SCALE, HEIGHT_SCALE), the 

calculation of image-space coordinates begins by normalizing 

latitude, longitude, and height as follows: 
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Using line and sample offsets and scale factors(LINE_OFF, 

SAMP_OFF, LINE_SCALE, SAMP_SCALE), the de-

normalized image-space coordinates (C,R), where Line is the 

image line number expressed in pixels with pixel zero as the 

center of the first line, and Sample is the sample number 

expressed in pixels with pixel zero is the center of the left-most 

sample, are finally computed as: 

 

OFFSAMPSCALESAMPcC __  (5) 

 

OFFLINESCALELINErR __  (6) 

 

where the polynomial Fi(i=1, 2, 3, and 4) has the following 

general form:  
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  (7)  

 

 The maximum power of each of the coordinates of each item in 

the polynomial of formula (1) is not more than 3. The sum of 

the power of each item of each coordinate is not more than 

3(There are usually 1, 2, and 3 three values). 

 

3.Block adjustment based on RFM 

Block adjustment is to reduce the number of control points for 

model parameter calculation, by a few control points on the 

image model parameters of large area calculation, the second 

one is to assign errors through the global uniform, realize the 

small relative error area between images.  

 

General RFM and error compensation parameters are generally 

used in block adjustment of high resolution satellite images. 

The use of the image party can also be compensated by the 

square correction parameters. Using RFM and the affine 

transformation based on the image square, the model 

requirements of block adjustment of high resolution satellite 

images can be met. ground control of block adjustment: 
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where    C, R = The image coordinates of a ground control point 

or tie point calculated by a formula (1) image 

coordinates 

c,r   = The observation value of the image coordinates 

of a ground control point or tie point 

 

3.1 Linear Block Adjustment 

The formula (8) is expanded by the Tailor formula to retain the 

linear term: 
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Expression in a matrix form: 

 

LAXV  (10) 
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The correction of object coordinates is not used when a point is 

a ground control point. When the satellite image intersecting 

angle is small, A is the form of formula (14). 
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The error equation is transformed into the normal equation (15). 

The solution of this equation is obtained by the least squares 

solution. 

 

  LAAAdX TT 1
 (15) 

 

3.2 Non-linear Block Adjustment 

A non-linear least square regression can be used to solve error 

equation through residual equation which is based on ground 

control points. We can formulate the block adjustment problem 

as an incremental maximum likelihood estimation over a set of 

RPC compensation parameter and undetermined coordinates of 

tie points, together forming the state x = [e, f, P, L, H]. We want 

to find the optimal configuration satisfying the measurements. 

The established residual equation with the formula (1) and (8) : 
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0)( xF (18) 

 

The ground control points in image i according to the formula 

(16) established equation fi(x)=0.The equation set (18) is 

nonlinear. Solving the equation set,nonlinear least square is the 

form of least squares analysis which is used to fit a set of m 

observations with a model that is non-linear in n unknown 

parameters (m > n). It is used in some forms of non-linear 

regression. The basis of the method is to approximate the model 

by a linear one and to refine the parameters by successive 

iterations. There are many similarities to linear least squares, 

but also some significant differences. 

 

A model function y=f(x,β), that in addition to the variable x 

also depends on n parameters, β=(β1 ,β2,…,βn). with  m≥ 

n. It is desired to find the vectorβof parameters such that the 

curve fits best the given data in the least squares sense, that is, 

the sum of squares: 
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Levenberg-Marquardt (LM) algorithm can provide numerical 

solutions for the number of non-linear minimization (local 

minimum). This algorithm can achieve the advantage of 

combining Gauss and Newton algorithm and gradient descent 

algorithm by modifying parameters at execution time. LM 

algorithm with iterating computation is aimed to get best 

solution. LM algorithm is calculated based on the Trust Region 

Method. The radius of reliable range is changing during the 

progress of the calculation. The change of the reliable range is 

based on the accuracy of the equation which can be determined 

through the gain ration. The radius of reliable range and the step 

size of iteration are controlled by the gain ration in real time. If 

the percentage of the gain ration is too low, it is indicated the 

radius of reliable range of the change is far smaller than the 

value of the model. It means the result is not the ideal one and 

the radius of reliable range need be reduced. In a converse 

situation, it is indicated the radius of reliable range of the 

change is bigger than the value of the model. It shows the 

residual is sufficiently small and the radius of reliable range can 

be enlarged to calculate in continue. 
 

LM algorithm can be divided into the following steps: 

 

Step 1)  Randomly set the initial weight vector W0, set the 

target error ε, k=1. 

 

Step 2)  For the n element equation in the formula(17), we 

compute the Jacobi matrix J of the weight w. 

 

Step 3)  Search by press: 
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Step 4)  If  E(W(k))≤ε, then the algorithm terminates. 

Gain the weight vector that satisfies the requirement 

of precision. Otherwise, turn to step 5. 

 

Step 5)  If ‖f(W(k+1))-f( W(k))‖≤0,is that 

μk=μk//4.Otherwise, μk=μk×4, turn to step 3. 

 

4. Experiment and analysis  

4.1 Experimental data 

In this paper, ZY-3 satellite images in Tianjin area are used as 

experimental data. Contains 11 view images and RPC 

parameters in Figure 1. Experimentation area reference data is a 

high resolution DOM. Elevation is obtained through 1:50000 

DEM interpolation. 
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Figure 1. Image layout

 

4.2 Experimental scheme 

All the ground control points measured on the images are all 

obvious objects spot. The ground control points are selected 

from the high-precision image data by manual method. The 

image coordinates are selected on the left image. Accordingly， 

the corresponding object coordinates on the right image are 

selected. The control image of the right image is as 1:10000 

mapping in Figure 2. 

 

 
Figure 2. GCP selection 

 

Automatic selection of tie points are through image matching in 

Figure 3. A total of 54 tie points are selected. 

 
Figure 3. Tie point selection 

 

6 ground control points and 54 tie points are selected in this 

experiment. The red point is the ground control point in Figure 

1. The blue point is the tie point in Figure 1. 
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Figure 5. GCP and Tie point distribution 

 

After selecting ground control points and tie points, we use 

linear and non-linear adjustment methods to solve model 

parameters and output the orthophoto images. Overall accuracy 

statistics are shown in Table 1. Select corresponding points on 

orthophoto images and the control images. 

 
Figure 6. Check point selection 

 

 

4.3. Results and analysis

The data in Table 2 is the result of accuracy statistics based on 

each scene image. The error distribution of the results of the 

two methods are similar.  

 

In the experiment, 2 check points are selected for each view 

image. A total of 22 check points were selected.  At the same 

time, object coordinates for each check point on high-precision 

control images were obtained. 

 

The model location error of the check point is shown in Table 3. 

 

 

RMSE of  the check points is 1.436 m, about 0.68 pixels. The 

result shows that the model location accuracy of the check point 

is  high. 

 

 

 

 

 

 

 

 

 

Table 2. Accuracy of each scene image 

Adjustment 

method 
Gcp 

Tie 

Point 

Check 

Point 

Maximum 

column 

error(pixels) 

Maximum 

row 

error(pixels) 

Total(pixels) 

RMSE 

column 

(pixels) 

RMSE 

row 

(pixels) 

RMSE 

(pixels) 

Linear  6 54 22 0.88 -0.79 1.18 0.26 0.27. 0.37 

Non-linear 6 54 22 0.83 0.64 1.06 0.24 0.22 0.33 

Table 1. Precision statistics of linear and non-linear adjustment method 

 

Image 
Adjustment 

method 

RMSE 

column 

(pixels) 

RMSE 

Row 

(pixels) 

RMSE 

(pixels) 

Adjustment 

method 

RMSE 

column 

(pixels) 

RMSE 

Row 

(pixels) 

RMSE 

(pixels) 

1 Non-linear 0.25 0.25 0.35 Linear 0.25 0.26 0.36 

2 Non-linear 0.2 0.29 0.35 Linear 0.19 0.3 0.35 

3 Non-linear 0.29 0.22 0.36 Linear 0.33 0.23 0.4 

4 Non-linear 0.19 0.2 0.28 Linear 0.19 0.26 0.33 

5 Non-linear 0.28 0.27 0.39 Linear 0.29 0.27 0.39 

6 Non-linear 0.33 0.17 0.37 Linear 0.37 0.2 0.42 

7 Non-linear 0.16 0.2 0.26 Linear 0.21 0.29 0.35 

8 Non-linear 0.28 0.26 0.38 Linear 0.26 0.24 0.35 

9 Non-linear 0.19 0.19 0.26 Linear 0.21 0.24 0.32 

10 Non-linear 0.17 0.17 0.23 Linear 0.31 0.37 0.47 

11 Non-linear 0.17 0.18 0.25 Linear 0.17 0.27 0.32 
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Table 3. Accuracy of check point(non-linear adjustment method) 

 

5. Conclusions 

In this paper, the linear and nonlinear block adjustment methods 

are used to test the data in the experimental area. Their 

experimental results are compared with known control image 

data. Test results confirm: 

 

Under the premise of using the same control and checking data 

in the same area, the linear and non-linear block adjustment 

results have similar accuracy. 

Further experiments are needed for further verify the difference 

between the linear and non-linear block adjustment methods. It 

is necessary to experiment with the data of different sensors. 
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Image 
Check point 

id 

dx 

(m) 

dy 

(m) 

RMSE 

(m) 

1 
Ckp_1 -0.392 0.261 0.471 

Ckp_2 -1.045 0.784 1.306 

2 
Ckp_3 0.392 0.555 0.680 

Ckp_4 -0.588 -0.588 0.831 

3 
Ckp_5 0.539 0.816 0.978 

Ckp_6 -0.131 -0.784 0.795 

4 
Ckp_7 1.176 0.914 1.490 

Ckp_8 1.178 1.437 1.857 

5 
Ckp_9 -0.653 1.437 1.579 

Ckp_10 0.654 1.045 1.232 

6 
Ckp_11 -1.437 0.719 1.607 

Ckp_12 -1.306 1.176 1.758 

7 
Ckp_13 1.306 1.045 1.673 

Ckp_14 0.914 0.849 1.248 

8 
Ckp_15 1.306 0.784 1.523 

Ckp_16 -1.176 -0.392 1.239 

9 
Ckp_17 -1.502 0.392 1.553 

Ckp_18 -0.653 -0.261 0.704 

10 
Ckp_19 1.208 0.882 1.496 

Ckp_20 1.209 1.911 2.261 

11 
Ckp_21 -1.568 1.633 2.264 

Ckp_22 0.719 1.110 1.323 

RMSE = 1.436 
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