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ABSTRACT: 

 

The availability of thematic maps has significantly increased over the last few years. Validation of these maps is a key factor in 

assessing their suitability for different applications. The evaluation of the accuracy of classified data is carried out through a 

comparison with a reference dataset and the generation of a confusion matrix from which many quality indexes can be derived. In 

this work, an ad hoc free and open source Python tool was implemented to automatically compute all the matrix confusion-derived 

accuracy indexes proposed by literature. The tool was integrated into GRASS GIS environment and successfully applied to evaluate 

the quality of three high-resolution global datasets (GlobeLand30, Global Urban Footprint, Global Human Settlement Layer Built-

Up Grid) in the Lombardy Region area (Italy). In addition to the most commonly used accuracy measures, e.g. overall accuracy and 

Kappa, the tool allowed to compute and investigate less known indexes such as the Ground Truth and the Classification Success 

Index. The promising tool will be further extended with spatial autocorrelation analysis functions and made available to researcher 

and user community. 
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1. INTRODUCTION 

Thanks to the continuous advance in remote sensing and 

mapping technologies, the availability of land use/land cover 

(LULC) maps has considerably grown over the last few years. 

These datasets provide valuable information in several fields 

related to environmental studies and land resource monitoring, 

and they are frequently released under open access licenses for 

research purposes. Obviously, being aware of the classification 

accuracy of LULC maps is a key factor to evaluate their 

suitability for the various applications where they are exploited. 

The accuracy assessment of digital remotely-sensed data started 

around 1975 and still represents an important research topic. 

Many recommendations and guidelines have been published 

over the years suggesting different approaches. First 

assessments were performed thanks to a simple visual checkup 

based on the “looking good” requirement. Afterward, the need 

for a reliable evaluation gave rise to the non-site-specific 

assessment approach (Meyer et al., 1975) which was performed 

by comparing the areal extent of land use classes for classified 

and ground truth datasets. While providing information about 

LULC correctness in terms of proportion of land use classes, 

this method was not able to extract any information about the 

location errors. To avoid this limitation the site-specific 

assessment, and particularly the error matrix technique 

(Congalton and Green, 1999), has spread. According to Lunetta 

and Lyon (2004), since the mid-1980s the error matrix (or 

confusion matrix) has been considered as “the standard 

descriptive reporting tool for accuracy assessment of remotely 

sensed data”. Derived from a comparison between a classified 

dataset and a reference one, this matrix represents the starting 

point from which to extract many useful indexes able to 

describe agreements and disagreements between the two 

considered datasets. These indexes span from the most 

commonly used overall accuracy, user’s accuracy and 

producer’s accuracy (Story and Congalton, 1986), to the more 

complex Individual Classification Success (Koukoulas and 

Blackburn, 2001) and Ground Truth  (Türk, 1979) indexes. 

 

Since it enables the comparison of two sources of spatial 

information, the error matrix computation represents a key tool 

for Geographical Information System (GIS) software, which are 

the most used tool for practical processing and analysis of 

spatial data. However, these software currently focus on the 

simple confusion matrices computation and they provide very 

few indexes, usually the most common used ones. As an 

example, ArcGIS (ESRI, 2018), probably the most widely 

known GIS proprietary software, allows the user to derive 

omission and commission errors and the Kappa index. Shifting 

the focus on the Free and Open Source Software (FOSS), which 

is the object of this study, the Accuracy Assessment Plugin of 

QGIS (QGIS Development Team, 2018) provides user’s and 

producer’s accuracies and allocation and quantity 

disagreements while the r.kappa module of GRASS GIS 

(GRASS Development Team, 2018) calculates commission and 

omission errors, overall accuracy and kappa statistics. 

 

This work fits within this context and proposes the development 

of a new free and open source tool that can be easily integrated 

into GIS systems and enables users to automatically calculate all 

the statistics based on confusion matrix proposed by literature. 

The potential of the tool has been tested and demonstrated in a 

case study related to the accuracy assessment of three different 

high resolution LULC maps (GlobeLand30, Global Urban 

Footprint, Global Human Settlement Layer Built-Up Grid) in 

the area of Lombardy Region (Northern Italy). 
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The remainder of the paper has four parts. Section 2 provides a 

description of the tool and lists all the confusion matrix-derived 

measures considered; section 3 focuses on the case study 

application by illustrating the main characteristics of the 

datasets and the adopted methodology for accuracy assessment 

analysis; section 4 discusses the obtained results. Finally, 

section 5 presents conclusions and future directions of the 

study. 

 

2. TOOL DESCRIPTION 

The computation of the indexes has been implemented as FOSS 

stand-alone tool taking advantage of Python programming 

language, which makes easier the integration within GIS 

environments (e.g. GRASS GIS or QGIS software packages) 

and their powerful spatial analysis functionalities. The tool, 

mainly based on numpy and pandas Python libraries, outputs a 

csv file with a set of accuracy measures derived from the 

confusion matrix provided as input by the users. 

 

This study performed an accurate literature review to identify 

the existing quality measures that can be derived from a 

confusion matrix. Overall accuracy certainly represents the 

most common and simplest descriptive statistic and indicates 

the percentage of correctly classified samples. Since it provides 

a global evaluation of the dataset classification quality, this 

statistic is usually integrated with per-class accuracy indexes 

such as user’s and producer’s accuracy. The former identifies 

the probability of a reference sample unit being correctly 

classified while the latter identifies the probability that a sample 

unit classified on the map represents that category on the 

ground. Besides them, other less common but strictly correlated 

statistics can be mentioned. Fung and LeDrew (1988) proposed 

the average of user’s and producer’s accuracies while Nelson 

(1983) introduced the combined user’s or producer’s 

accuracies, used to dampen the inherent biases of the overall 

and average accuracies. Hellden’s mean accuracy is the 

harmonic mean of user's and producer's accuracy (Liu, 2007) 

and can be interpreted as a measure of overlapping between true 

and estimated classes. The Short’s mean accuracy (Labatut and 

Cherifi, 2011) represents instead the ratio of the estimated and 

true classes intersection to their union. Koukoulas and 

Blackburn (2001) proposed the Individual Classification 

Success Index, which reflects the classification effectiveness of 

a class as the average between user’s and producer’s accuracy. 

This index can be used to calculate the overall classification 

effectiveness by averaging its values for all categories 

(Classification Success Index) or some of them (Group 

Classification Success Index). 

 

Despite the harsh criticism of many authors, i.e. Brennan and 

Prediger (1981), Stehman, (1997) and Foody (2008), also the 

use of Kappa global statistic still continues to be pervasive in 

matrix confusion-based accuracy assessment; for this reason all 

the Kappa-like statistics have been considered within the 

implemented tool. This group of statistics differs from overall 

accuracy since it takes into account the so-called “chance 

agreement” component that is calculated in different ways. 

Standard Kappa coefficient identifies the agreement that is 

expected when the raters are totally independent while 

conditional Kappa expresses the same “chance agreement” at 

per-classes level. The weighted Kappa (Cohen, 1968) is 

weighted according to the importance of the errors while Tau 

index (Ma and Redmond, 1995) calculates the “chance-

agreement” based on prior probability of class membership. 

Aickin’s alfa (1990) assumes that the population of samples 

includes easy-to-classify and hard-to-classify items, out of 

which, only the latter is classified by chance. Finally, Ground 

truth index supposes that classifier includes an always correct 

component and a randomly correct one, which corresponds to 

the “chance-agreement”. 

 

Margfit is a method proposed by Congalton and Green (1999) 

based on iterative proportional fitting with the aim to normalize 

the matrix. In this normalization process, differences in sample 

sizes used to generate the matrices are eliminated and, therefore, 

individual cell values within the matrix are directly comparable. 

    

Finally, the last group of considered measures is proposed by 

Pontius and Millones (2011) that suggested the estimation of 

the disagreement index and its two components, i.e the quantity 

and allocation disagreements. These indexes identify the 

amount of difference between the reference map and a 

comparison map due to the less than perfect match in the 

proportions and the spatial allocation of the categories, 

respectively. 

 

3. CASE STUDY: DATA AND IMPLEMENTATION 

The case study selected for the testing of the implemented tool 

is the area corresponding to Lombardy Region (Northern Italy). 

In the following, information about considered datasets and data 

processing are provided. 

 

3.1 Datasets 

The implemented tool has been applied to evaluate the 

classification accuracy of three recently proposed high-

resolution LULC maps, GlobeLand30 (hereafter GL30), Global 

Urban Footprint (hereafter GUF) and Global Human Settlement 

Layer Built-Up Grid (hereafter GHS). 

 

The GL30 is a product of “Global Land Cover Mapping at Finer 

Resolution” project led by the National Geomatics Center of 

China (NGCC). It is a land cover dataset at 30m resolution 

available for the two timeline years of 2000 and 2010. It has 

been generated through the classification of multispectral 

images of Landsat Thematic Mapper (TM) and Enhanced TM 

plus (ETM+) satellites and China Environmental Disaster 

Alleviation Satellite (HJ-1). The dataset has been created by 

means of the pixel-object-knowledge-based (POK-based) 

classification approach (Chen et al., 2014). The classification 

system includes 12 land cover types, namely: cultivated land, 

mixed forest, broadleaf forest, coniferous forest, grasslands, 

shrublands, wetlands, water, tundra, artificial surfaces, bare 

lands, permanent snow and ice. The dataset used within this 

work is referred to 2010 and has been provided as GeoTiff 

dataset in WGS84 (World Geodetic System 1984) reference 

system and UTM (Universal Transverse Mercator) zone 32N 

projection (EPSG: 32632). 

 

The GUF (Esch et al., 2017) is a global mask of built-up areas 

at a resolution of 0.4 arc second (about 12m at the equator). It 

has been generated taking advantage of the dedicated Urban 

Footprint Processor (UFP) implemented at the German 

Aerospace Center (DLR). The UFP has been applied on 

approximately 180.000 single TerraSAR-X/TanDEM-X image 

products for the reference year 2011. The dataset is provided as 

thematic raster map in GeoTiff format, WGS84 reference 

system (EPSG: 4326), and classification based on three values: 

255 for built-up areas, 0 for non-built-up areas and 128 for 

missing data. According to DLR, a built-up area is defined as “a 
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region featuring man-made building structures with a vertical 

component”. 

 

The GHS is one of the products resulting from the Global 

Human Settlement Layer (GHSL) project carried out by the 

Joint Research Center (JRC) with the aim to provide global 

spatial information about the human presence on the planet over 

time. The dataset contains multitemporal information layers on 

built-up presence derived from Landsat image collections; it has 

been produced by means of Global Human Settlement Layer 

methodology (Pesaresi et al., 2016). The dataset selected for the 

present work is the GHS product related to 2014 characterized 

by a resolution of around 38m, available in GeoTiff format and 

Google Mercator Projection (EPSG:3857). The map is based on 

three values: 1 for non-built-up areas, 101 for built-up areas, 

and 0 for missing data. Similarly to GUF, GHS defines built-up 

areas as “the union of all the spatial units collected by the 

specific sensor and containing a building or part of it”. 

 

A key point for the accuracy assessment of the three land cover 

maps is the comparison with a reference dataset characterized 

by a greater detail. This requirement is satisfied by DUSAF, a 

land cover database created in 2000–2001 for Lombardy Region 

(Credali et al., 2011). DUSAF consists of land cover vector 

maps at 1:10,000 scale referred to different time periods. This 

data is provided as Shapefile in WGS84 reference system, with 

the UTM zone 32N projection (EPSG: 32632). The adopted 

legend is structured in five hierarchical levels of detail. The first 

three levels comply with the Corine Land Cover nomenclature 

and the most general one consists of five classes: artificial 

surfaces, agricultural areas, forest and semi natural areas, 

wetlands, and water bodies. For the present work the DUSAF 

4.0 related to 2012 has been selected. 

 

3.2 Implementation 

The data processing workflow carried out to perform the 

validation of each classified map (GL30, GUF, GHS) with 

respect to the reference (DUSAF) is presented in Figure 1. 

Since the data to be compared may be different in terms of 

reference system, format, resolution and thematic legend, some 

processing steps to harmonize them were required. More in 

detail, classified maps having a different reference system with 

respect to DUSAF were re-projected to WGS84/UTM32N 

while DUSAF was rasterized according to the resolution of the 

classified map considered for the comparison. 

 

 

Figure 1. Data processing workflow 

 

The third step of the processing aims to provide a common set 

of land cover classes between the maps under comparison. To 

that goal a binary reclassification (non-built-up, built-up) was 

performed to DUSAF for comparing with GUF or GHS. More 

in detail, the DUSAF classes corresponding to continuous and 

discontinuous urban fabric and industrial, commercial, public 

and private units were reclassified as built-up and all the others 

as non-built-up. For the comparison between GL30 and 

DUSAF, two different methods were considered. In the first 

case the classes of DUSAF have been reclassified according to 

GL30 thematic legend based on eleven classes (as proposed in 

Table 1). Vice versa, in the second case the GL30 has been 

reclassified to the five first-level classes of DUSAF as shown in 

Table 2. After these processing steps, the datasets are 

comparable, and the confusion matrix and the accuracy 

measures were computed. 

 

The implementation of the processing workflow was performed 

by taking advantage of the re-projection, rasterization and 

reclassification modules provided by GRASS GIS, which also 

has a specific module to compute the error matrix between two 

raster maps. The tool for indexes calculation was integrated as a 

GRASS GIS script in such a way to automate the procedure. 

 

DUSAF classes GLOBELAND30 classes 

Agricultural Areas Cultivated land 

Mixed Forest Mixed forest 

Broad-leaved forest, Recent 

afforestation 
Broadleaf forest 

Coniferous forest Coniferous forest 

Natural Grassland Grasslands 

Moors and heathland, 

Transitional woodland/shrub 
Shrublands 

Wetlands Wetlands 

Artificial Areas Artificial surfaces 

Beaches, dunes and sand 

planes, Bare Rock, Sparsely 

vegetated areas 

Bare lands 

Water Bodies Water 

Glaciers and perpetual snow Permanent snow and ice 

Table 1. Rules adopted to reclassify DUSAF according to 

GlobeLand30 classes 

 

DUSAF classes GLOBELAND30 classes 

Artificial surfaces Artificial surfaces 

Agricultural areas Cultivated land 

Forest and semi natural 

areas 

Broadleaf forest, Coniferous 

forest, Mixed forest, 

Grasslands, Shrublands, Bare 

lands, Permanent snow and ice 

Wetlands Wetlands 

Water bodies Water 

Table 2. Rules adopted to reclassify GlobeLand30 according to 

DUSAF first-level classes 

 

4. RESULTS 

Table 3 shows the global accuracy measures obtained for the 

three evaluated land cover datasets. All data ranges from 0% 

(no agreement) to 100% (perfect agreement); only for 
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disagreement parameters a value of 0% indicates perfect 

agreement and a value of 100% identifies no agreement.  

 

As explained in the previous section, the accuracy assessment of 

GL30 has been performed taking into account two different 

classification methods based on 11 classes (hereafter GL30-11) 

and 5 classes (hereafter GL30-5), respectively.  

 

Regarding the GL30-11 analysis, results show a value of overall 

accuracy equal to 73.4%. Since the present work has not the 

aim to evaluate the dataset according to a target application, the 

judgement of the goodness of this result is a challenging task. 

Literature provides very different thresholds to define the 

acceptable value of overall accuracy, e.g Pringle et al. (2009) 

define satisfying an overall accuracy of 70% while Anderson et 

al. (1976) require a value of at least 85%. The analysis of the 

other statistics, such as the K-like indexes, suggests that the 

classification quality is not high; in fact, according to Landis 

and Koch (1977) a value of Kappa coefficient equal to 64.4% 

suggests a moderate agreement between GL30-11 and DUSAF. 

The same behaviour is highlighted by the Classification Success 

Index, which is equal to 61.2%, much lower with respect to the 

optimal threshold value proposed by Koukoulas & Blackburn 

(2001). The value of Group Classification Success Index, which 

has been obtained by excluding mixed forest, shrubland, 

bareland and permanent ice and snow classes from the 

computation, is equal to 77.5% and suggests that some of the 

removed land cover classes are the main responsible of the less 

than optimal classification. Finally, the disagreements measures 

show that the most of incoherence between GL30-11 and 

DUSAF is mostly due to allocation component (19.6%) with 

respect to the quantitative one (7%).  

 

Index GL30-5 GL30-11 GHS GUF 

Overall accuracy 86.2 73.4 94.2 95.5 

Average user’s 

accuracy 
78.3 62.3 86.6 90.2 

Average producer's 

accuracy 
73.2 60.1 84.5 87.7 

User’s combined 

accuracy 
82.2 67.8 90.4 92.9 

Producer’s 

combined accuracy 
79.7 66.7 89.3 91.6 

Classification 

Success Index 
75.8 61.2 85.6 88.9 

Group 

Classification 

Success Index 

72.2 77.5 - - 

Kappa coefficient 78.1 64.4 71.1 77.8 

Conditional Kappa 73.9 59.2 71.2 77.9 

Weighted Kappa 77.7 37.0 - - 

Tau 86.2 70.7 94.2 95.5 

Alpha 78.1 68.7 83.5 87.4 

Margfit 87.7 67.0 90.3 92.7 

Disagreement 13.8 26.6 5.8 4.5 

Allocation 

disagreement 
9.8 19.6 5.1 3.6 

Quantity 

disagreement 
4.0 7.0 0.7 0.9 

Table 3. Case studies results: global accuracy measures 

 

Figure 2 reports the cumulative values of the computed 

individual class accuracy measures; here, each index value is 

ranging from 0 (no agreement) to 1 (perfect agreement). The 

proposed statistics clearly identify shrubland, mixed forest, 

wetlands and grasslands as the classes with a significantly 

lower level of accuracy. 

 

 

Figure 2. GL30-11 analysis results: values of per-class indexes 

(producer’s accuracy PA; user’s accuracy UA; Individual 

Classification Success Index ICSI; Hellden’s mean accuracy 

MAHi; Short’s mean accuracy MASi; Ground Truth GT; 

Conditional Kappa Kc) 

 

The case study related to GL30-5 merged in a single land cover 

class (forests and seminatural areas) most of the categories 

characterized by a low classification accuracy in GL30-11 

analysis. The adoption of a less detailed classification legend 

leads to an increasing of the quality of global indexes (Table 3); 

namely, the overall accuracy (86.2%), the K-like indexes, and 

the classification success index are significantly higher with 

respect the previous case and exceed or are very close to the 

thresholds suggested by literature as satisfying values. 

Information extracted from disagreement measures confirms 

that the allocation component is the primary cause of 

incoherence between classes. The cumulative values of 

individual class accuracy measures (Figure 3) show that 

wetland is the only poorly classified land cover class. 

 

Regarding the accuracy assessment of GUF and GHS datasets, 

very similar results have been obtained. All the indexes 

undoubtedly identify a very good classification quality since 

they are almost always higher than 75% and some measures 

reach the 95%, e.g. the overall accuracy. As observed in the 

previous case studies, the low values of disagreement are mostly 

related to the allocation component. 
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Figure 3. GL30-5 analysis results: per-class indexes (producer’s 

accuracy PA; user’s accuracy UA; Individual Classification 

Success Index ICSI; Hellden’s mean accuracy MAHi; Short’s 

mean accuracy MASi; Ground Truth GT; Conditional Kappa 

Kc) 

 

5. CONCLUSIONS 

According to the “good practices” suggested by many authors, 

confusion matrix and its derived statistics represent the standard 

approach for the accuracy assessment of the classification of 

remotely-sensed data. Although many GIS software packages 

provide modules for confusion matrix computation, a 

comprehensive tool enabling the calculation of all the accuracy 

indexes proposed by literature is not yet available. 

 

In the present work, a detailed investigation about confusion 

matrix-derived indexes was performed and a Python FOSS 

module was implemented to facilitate their automatic 

computation. The tool was successfully applied to evaluate the 

classification accuracy of three high-resolution LULC datasets, 

i.e. GL30, GHS, and GUF on the area of Lombardy Region 

(Italy). The assessment was performed through a comparison 

between each dataset and a reference map, i.e DUSAF. The 

analysis of results suggests a very satisfactory accuracy of GUF 

and GHS built-up datasets. Regarding the GL30 dataset, a high 

overall accuracy is obtained by considering the classification 

system based on the first-level classes of DUSAF nomenclature. 

Instead, the accuracy decreases if a more detailed thematic 

legend is considered, especially for the classes related to 

vegetation (shrubland, grassland, mixed forests). Obviously, 

the correct matching between two detailed classification 

systems represents a challenging task, thus errors due to 

interpretation of ambiguous classes may have been introduced 

during the processing phase. 

 

Some improvements to the tool implemented in this work are 

planned in the future. Investigations are ongoing to extend the 

tool with additional functions able to detect any patterns of 

error in discrepancies between the LULC products. To this 

purpose, different spatial autocorrelation measures, e.g. 

Moran’s I (Moran, 1950), Geary’s C (Geary, 1954), join counts 

(Moran, 1948), Getis-Ord G (Getis and Ord, 1992), have been 

explored to analyse the geographical distribution of errors in the 

classified maps. Currently the work is focused on the join 

counts statistic, which is not easy to handle when there is a 

number of categories larger than 2 or 3. Join counts tests have 

been performed on land cover maps involving just two classes 

(binary classification). Further experiments are planned in the 

short term to apply the joint counts or other autocorrelation tests 

to enable multivariate classification error pattern detection. 

 

Finally, future development of the work will consist also in the 

integration of the tool as an Addons for GRASS GIS and a 

Plugin for QGIS, with the purpose of creating a user-friendly 

Graphical User Interface and widen its usage among users, 

professionals and researchers. 
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