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ABSTRACT: 

 

Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of 

hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional 

neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model 

not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed 

framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN 

has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have 

one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for 

hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed 

model provides competitive performance. 

 

 

1. INTRODUCTION 

Spatial and spectral information are obtained simultaneously by 

hyperspectral remote sensing. Hyperspectral classification is one 

of the foremost tasks in remote sensing image analysis. And its 

application scope has now reached farther than ever owing to 

significant improvements of pattern recognition, statistics and 

other related technologies.  

 

For characteristics of hyperspectral data, some data analysis 

techniques based on machine learning have been applied to 

classification during the past several years (Plaza et al. 2009). As 

an excellent method of machine learning, support vector machine 

(SVM) was applied to classification of hyperspectral data. It 

maximizes the margin in high-dimensional feature spaces using 

kernel methods for the samples. SVM-based classification 

methods were the state-of-the-art methods for a long time 

(Melgani and Bruzzone 2004). In addition, many techniques 

based on spectral–spatial have been proposed for hyperspectral 

image classification. A model based on markov random fields 

(MRFs) and SVM, fusing spectral and spatial features, was 

proposed for hyperspectral image classification (Tarabalka et al. 

2010). Then, a spectral–spatial segmentation method based on 

subspace multinomial logistic and markov random is proposed 

(Li, Bioucas-Dias, and Plaza 2012). Recently, deep learning has 

been successfully applied in hyperspectral classification. In order 

to get deep features generated by the model of hyperspectral 

classification, a method based on stacked auto-encoders for the 

classification of hyperspectral data was proposed (Chen, Lin, et 

al. 2014). But it overlooked the spatial distribution patterns, due 

to flattening the spatial feature generated by PCA. Then an 

approach based on convolutional neural network was proposed 

for extracting spectral features, but it didn’t take the spatial 

information into account. Instead, convolutional neural network 

has been introduced for hyperspectral classification to generate 

spatial features (Yue et al. 2015). For the traditional deep 
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convolutional neural networks can only extract spatial or spectral 

features of the same scale, a deep convolutional neural network 

(CNN) with spatial pyramid pooling was proposed to extract 

spatial features for hyperspectral image classification (Yue, J., et 

al. 2016). 

 

In this paper, a novel deep convolutional neural network (CNN) 

is proposed, which extracts spectral-spatial information of 

hyperspectral images correctly. The proposed model, based on 

three-dimensional local convolutional filters and SPP, not only 

learns sufficient knowledge from the limited number of samples, 

but also has powerful generalization ability. 

 

The following text is organized as follows. In section 2, we 

present architecture of the proposed method. Experiment results 

and discussions are given in section 3. In section 4, we make the 

conclusion. 

 

2. METHODOLOGY 

2.1 Three-dimensional convolution for hyperspectral image 

In hyperspectral image processing field, 1D CNN or 2D CNN is 

usually applied to feature extraction (Hu W., et al. 2015). And 

CNN is used to extract spectral features or spatial features. When 

applied to HSI classification problems, it is crucial to capture 

spectral-spatial features in an end-to-end framework. 

Considering the characteristics of hyperspectral images, three-

dimensional hyperspectral data is input into the proposed model. 

To take advantage of the information in hyperspectral image with 

more than one hundred of bands efficiently, the proposed model 

is based on three-dimensional local convolutional filters. As 

neighboring pixels of hyperspectral image is the input of model, 

three-dimensional local convolutional filters can learn spectral-

spatial features in the same channel easily.  
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The value of a neuron is given and shown as follows: 
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where, v means the output variable in the feature map. P, Q is the 

size of kernel toward the spatial dimension respectively. And (p, 

q, r) are the indexes of kernel and m is the index of feature map. 

(x, y, z) are the indexes of feature map. w means the convolutional 

kernel parameter. i, j are the indexes of input layer and output 

layer respectively. M is the number of feature maps. b is the bias 

term. 

 

Parametric rectified linear unit (PReLU) is selected as the 

activation function of three-dimensional local convolutional 

filters in this work. 

 

Through 3D convolution, CNN can extract the spatial and 

spectral information of hyperspectral data simultaneously. The 

learnt spectral-spatial features are useful for classification. 

 

2.2 Feature extraction with spatial pyramid pooling used 3D 

pooling 

CNN has been introduced for hyperspectral classification to 

generate spatial features (Yue et al. 2015). When applied to 

hyperspectral image classification problems, the deep CNNs with 

traditional pooling can only extract features of the same scale. 

For this problem, a deep CNN with spatial pyramid pooling (SPP) 

was proposed for hyperspectral image classification to extract 

spatial information (Yue et al. 2016). 

 

SPP uses multi-level pooling windows rather than a single 

window size to pool the feature maps, which is more robust to 

object distortions and it also can pool features of different scales. 

Instead, SPP can also generate features of different scales by 

different sizes of pooling windows in this paper. 

 

To be more robust to object distortions and generate features of 

different scales, the top pooling layer after the top convolutional 

layer is replaced by an SPP layer.  

 

Consider the output feature maps of the top convolutional layer 

which has a size of n × m × w. Then a certain number of different 

sizes of pooling windows are chosen as SPP. For example, three 

sizes of 3D-pooling window are chosen and they are n × m × w, 
𝑛

2
  × 

𝑚

2
 × 

𝑤

2
 and 

𝑛

3
 × 

𝑚

3
  × 

𝑤

3
 . As the strides of the pooling are the 

same as the pooling window sizes, SPP can generate features 

with three sizes (1 × 1 × 1, 2 × 2 × 2, 3 × 3 × 3).Then these 

features are flatten and concatenated into one vector which has 

the size of 1 × 36. The vector generated by SPP is input of fully 

connected layer. 

 

Figure 1 illustrates an example of three-level 3D-SPP. The size 

of the feature map is a × a × a (a is twice as much as b and a is 

three times as much as c). In each part, the responses of each filter 

are pooled using max pooling. The outputs of the SPP are 

different dimensional vectors, respectively. 

 

……

SPP based on 3D pooling

Feature map

……

a*a*a Pooling kernel

Stride =  a*a*a

b*b*b Pooling kernel

Stride = b*b*b

c*c*c Pooling kernel

Stride = c*c*c

Figure 1. An example of three-level pyramid pooling used 3D 

pooling. The configuration of the figure is for a network whose 

feature map size of the top convolutional layer is and the output 

of the spatial pyramid pooling is {3 × 3 × 3, 2 × 2×2, 1 × 1×1}. 

 

2.3 Joint spectral–spatial classification framework 
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Figure 2. Flowchart of our proposed deep CNN model.

 

With 3D convolution and SPP based on 3D pooling, a deep 

convolutional neural network model is built, which is illustrated 

in Figure 2. Three-dimensional hyperspectral data is input to the 

proposed model. And the 3D CNN is designed to extract the 

spectral-spatial features of hyperspectral data, and three different 

sizes of three-dimensional pooling windows are chosen as the 

SPP to generate different scales of features. As the input of the 

fully connected network, these features are concatenated into 

one-dimensional data. Then the fully connected neural network 

with activation function called the hyperbolic tangent function 

fuses the extracted features. At the end of the framework, we 

choose a logistic regression named softmax to produce the final 

classification map.  

 

In our framework, spatial pyramid pooling for three-dimensional 

local convolutional filters can generate features of different 
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scales to make our proposed model learn these spectral-spatial 

features easily. Moreover, three groups of features are generated 

for extracting the spatial-spectral information effectively. Then a 

sufficient number of fully connected neurons is set to fuse these 

extracted features. To prevent overfitting, dropout is introduced 

to fully connected network. The network temporarily stops 

updating some weights of hidden nodes in network and retains 

these weights during the training, which can be seen as reducing 

redundant connections of the network structure randomly. 

 

3. EXPERIMENTS 

To evaluate the performance of the proposed method, the Salinas 

Valley scene dataset is used in our work.  

 

The Salinas scene dataset collected by the AVIRIS sensor 

illustrates an area over Salinas Valley, California, with a spatial 

resolution of 3.7 m. The image comprises 512×217 pixels with 

224 bands. There are also 15 different classes, and the numbers 

of training and testing samples are listed in Table 1. For the data, 

180 labeled pixels per class for training and all other pixels in the 

ground truth map for test. Surrounding 3×3 neighboring pixels 

for training convolutional filters are cropped from these two 

experimental datasets to learn the spatial and spectral features. 

Because of the existence of 3×3 neighboring pixels, the labeled 

samples are randomly selected in the middle of category areas. 

To avoid overfitting, the number of the training samples is also 

increased by four times by mirroring the training samples across 

the horizontal, vertical, and diagonal axis.  

 

Figure 3 illustrates the corresponding classification maps 

obtained with our proposed method and a traditional 2D deep 

CNN only based on spectral features. Furthermore, overall 

accuracy and kappa coefficient are calculated by confusion 

matrices to quantify the performance of the proposed deep CNN. 

Overall accuracies, individual classification accuracies and 

kappa coefficient obtained for these two different classification 

methods are listed in Table 2. Compared with a traditional 2D 

deep CNN only based on spectral features, the producer 

accuracies of these classes named fallow, celery and soil 

vineyard develop are higher obviously. It shows that our 

proposed model are sensitive to these classes and can get these 

features easily. The overall accuracy of the traditional deep 

CNNs is 92.4634%, and the kappa coefficient is 0.9101. Instead, 

the overall accuracy of our proposed method is 94.2596%, and 

the kappa coefficient is 0.9312. It is obvious that our proposed 

method has better performance than a traditional 2D deep CNN 

using Salinas Valley data set. 

 

Number Class Training Test 

1 Broccoli green weeds 1 180 1829 

2 Broccoli green weeds 2 180 3546 

3 Fallow 180 1796 

4 Fallow rough plow 180 1214 

5 Fallow smooth 180 2498 

6 Stubble 180 3779 

7 Celery 180 3399 

8 Vineyard & Grapes untrained  180 18359 

9 Soil vineyard develop 180 6023 

10 Corn senesced green weeds 180 3098 

11 Lettuce romaine, 4wk 180 888 

12 Lettuce romaine, 5wk 180 1747 

13 Lettuce romaine, 6wk 180 736 

14 Lettuce romaine, 7wk 180 890 

15 Vineyard vertical trellis 180 1627 

 Total 2700 51429 

Table 1. Number of training and test samples used in the Salinas scene dataset. 

 

Broccoli green weeds 1

Broccoli green weeds 2

Fallow

Fallow rough plow

Fallow smooth

Stubble

Celery

Vineyard & Grapes untrained 

Soil vineyard develop

Corn senesced green weeds

Lettuce romaine, 4wk

Lettuce romaine, 5wk

Lettuce romaine, 6wk

Lettuce romaine, 7wk

Vineyard vertical trellis

(a) (b) (c)
  

Figure 3. RGB composition maps resulting from classification for the Salinas scene dataset. From left to right: (a) ground truth, (b) a 

traditional deep CNNs, and (c) the proposed method. 
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Class 2D deep CNN Our proposed method 

Broccoli green weeds 1 83.43% 95.52% 

Broccoli green weeds 2 98.90% 89.51% 

Fallow 86.25% 90.81% 

Fallow rough plow 99.02% 97.79% 

Fallow smooth 88.03% 86.02% 

Stubble 98.28% 98.28% 

Celery 90.11% 96.73% 

Grapes & Vineyard untrained  94.25% 96.97% 

Soil vineyard develop 92.53% 97.29% 

Corn senesced green weeds 75.98% 79.76% 

Lettuce romaine, 4wk 85.46% 80.65% 

Lettuce romaine, 5wk 100.00% 99.54% 

Lettuce romaine, 6wk 94.16% 97.96% 

Lettuce romaine, 7wk 94.84% 90.46% 

Vineyard vertical trellis 93.39% 90.45% 

Overall Accuracy 92.4634% 94.2596% 

Kappa coefficient 0.9101 0.9312 

Table 2. Overall accuracies, individual classification accuracies and kappa coefficient obtained for different classification methods 

when applied to the AVIRIS Salinas scene hyperspectral data set. 

 

4. CONCLUSION 

In this paper, we proposed a novel deep CNN for spectral-spatial 

classification of hyperspectral data. To be more robust to object 

distortions and generate features of different scales, spatial 

pyramid pooling is introduced into three-dimensional local 

convolutional filters for hyperspectral classification. When 

applied to the AVIRIS Salinas scene hyperspectral data set, 

overall accuracies and kappa coefficient is obtained for different 

classification methods. The overall accuracy of the traditional 

deep CNN is 92.4634%, and the kappa coefficient is 0.9101. 

Instead, the overall accuracy of our proposed method is 

94.2596%, and the kappa coefficient is 0.9312. Compared with a 

traditional 2D deep CNN only based on spectral features, the 

proposed method could achieve higher accuracy using the 

Salinas scene dataset. Research on our proposed model for other 

widely used hyperspectral remote sensing datasets is our future 

work.  
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