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ABSTRACT: 

 

TLS (Terrestrial Laser Scanner) has long been preferred in the cultural heritage field for 3D documentation of historical sites thanks 

to its ability to acquire the geometric information without any physical contact. Besides the geometric information, most TLS 

systems also record the intensity information, which is considered as an important measurement of the spectral property of the 

scanned surface. Recent studies have shown the potential of using intensity for damage detection. However, the original intensity is 

affected by scanning geometry such as range and incidence angle and other factors, thus making the results less accurate. Therefore, 

in this paper, we present a method to detect certain damage areas using the corrected intensity data. Firstly, two data-driven models 

have been developed to correct the range and incidence angle effect. Then the corrected intensity is used to generate 2D intensity 

images for classification. After the damage areas being detected, they are re-projected to the 3D point cloud for better visual 

representation and further investigation. The experiment results indicate the feasibility and validity of the corrected intensity for 

damage detection. 
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1. INTRODUCTION 

Historical architectures as a nation’s cultural heritage, 

representing a country’s cultural legacy, its conservation and 

management are no doubt of great significance. In the last few 

decades, numbers of researchers have contributed to the 

conservation of cultural heritage and most of them focused their 

attention on 3D documentation to achieve highly detailed 3D 

models. The development and growth of the 3D survey 

techniques, from photogrammetry to laser scanning, from 

ground-based to UAVs (Unmanned Aerial Vehicles) have also 

contributed greatly the 3D documentation of cultural heritage. 

TLS with its completeness, accuracy and fastness characteristics 

is rapidly becoming one of the most commonly used techniques 

in the heritage conservation field. It can not only protect 

cultural heritage but also facilitate the understanding of their 

present state, construction and rehabilitation, and exhibition and 

promotion. Most previous research efforts have been exerted to 

investigate the geometrical information obtained by TLS in 

order to generate more accurate and realistic 3D models of the 

historical sites. In addition to geometric information, most TLS 

systems also record intensity data which is the information 

represents the peak amplitudes recorded in the laser 

backscattering beam return from the scanned surface. The 

intensity data can be utilized to interpret the scattering 

properties of the scanned surface and has shown its potential in 

a variety of fields like forestry inventory (Zhu et al., 2015), 

aeolian environment monitoring (Nield et al., 2014) and 

geology (Hartzell et al., 2014; Carrea et al., 2016). In addition, 

some researchers also investigated the application of intensity in 

monitoring the health state of historical architectures. Armesto 

et al. (2010) first investigated the potential of intensity data for 

the detection and classification of damages in masonry 

structures of a historical building. Riveiro et al. (2016) applied 

the intensity images to conduct segmentation of masonry blocks, 

which may be helpful for the future stability analysis of the 

historic structure. Most of these studies utilized the original 

intensity data acquired. However, many studies indicate that the 

intensity data is not merely influenced by target surface 

characteristics. Other factors like scanning geometry, scanner 

mechanism and surrounding environment may also affect the 

intensity (Kashani et al., 2015). Therefore, these results 

achieved using original intensity may be less accurate and 

trustworthy. In order to get a more credible result, we proposed 

a method that utilized the corrected intensity data for the 

damage detection of historical architectures in this paper.  We 

investigated the intensity data correction method first. Then it 

was applied to the study areas, some inner walls of an ancient 

Chinese pagoda. After intensity correction, the 3D point cloud 

was projected to 2D intensity images for image classification to 

detect certain damage areas. Finally, the damage areas detected 

were re-projected to the 3D point cloud for better visual 

representation and further investigation. 

 

The remainder of this paper is organized as follows. We first 

present a review of intensity data correction and damage 

detection for historical architectures in Section 2. The proposed 

methods are described in Section 3. Section 4 describes the 

experiments conducted. Finally, conclusions follow in Section 5. 

 

2. RELATED WORK 

2.1 Intensity Data Correction 

Researches focused on the correction of intensity data date back 

to a decade ago and numerous procedures and methods have 
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been proposed. These methods are mainly divided into two 

categories: model-driven method and data-driven method. 

(Höfle and Pfeifer, 2007). Model-driven method is based on the 

physical theory of the LiDAR equation, which relates the 

received laser power with the transmitted power, system 

efficiency and geometry, etc. This kind of method can achieve 

results with physical meanings but it does not compensate for 

systematic errors and other noises during scanning. Different 

from model-driven method, in data-driven method the actual 

physical transmission of laser is dismissed. This method first 

constructs a suitable relationship between the transmitted laser 

power with the received power and several effective factors. 

Intensity data from homogenous region is then extracted and 

examined. Through some form of best-fit equation, the model 

parameters can be computed (Ding et al., 2013). Data-driven 

method is easy to conduct but it has certain limitations in inter-

comparison of instruments. Both model and data-driven 

methods have been successfully developed for ALS intensity 

data correction (Habib et al., 2011; Jutzi and Gross, 2014). 

Compared with ALS data, only a few recent studies have 

focused on the TLS intensity correction. And its correction also 

faces more unique challenges than ALS data (Li et al., 2016). 

Many studies have found that the intensity data does not follow 

the LiDAR equation in the near range and different TLS 

systems may result in different intensity-range relations 

(Kaasalainen et al., 2011; Fang et al., 2014; Tan and Cheng, 

2016). Therefore, most TLS intensity correction studies 

investigated data-driven method instead of the model-driven 

one (Tan et al., 2016; Blaskow and Schneider, 2014). 

  

2.2 Damage Detection for Historical Architectures 

Historical architectures often suffer certain damages due to 

natural factors, human vandalism and lack of proper 

maintenance. There are different kinds of damages which affect 

the historical architectures, including moisture, weathering, salt 

blooming and biological changes like moss and lichen (Armesto 

et al., 2010). These kinds of material damage need to be 

detected and monitored carefully. Traditional damage detection 

of historical architectures often needs manual analysis which is 

often performed by an expert through naked eyes. This kind of 

method is labour-intense and time-consuming. Moreover, some 

heritages are not allowed to directly touch or intervene in order 

to avoid erosion caused by the detection devices or human skins 

(Moses et al., 2014). 2D image-based techniques are also 

commonly used for detection of damages. Close-range 

photogrammetry has been widely used in 3D documentation of 

cultural heritage thanks to its flexibility in data acquisition and 

easy operability. The acquired RGB images can be useful for 

skilled experts to locate and quantify the damaged areas. The 

2D images acquired by the infrared camera are also used. These 

images may be helpful for the detection of certain damages 

which are not visible in RGB images (Kedzierski et al., 2017). 

However, the images often have small size which can only be 

used in limited areas. Moreover, the infrared images are prone 

to errors caused by temperature and other environment effects. 

TLS is often used for 3D documentation purpose in heritage 

conservation filed, where the geometric information is often 

used. In recent years, the use of intensity data is also increasing. 

In the research of Armesto et al. (2010), they combined the 

intensity value of three different laser scanners with three kinds 

of unsupervised classification methods to detect and quantify 

the damages that affect building materials of the historical 

buildings. Garcíatalegónet al. (2015) investigated the usage of 

intensity data provided by different terrestrial laser scanners for 

detection and assessing of pathologies in facades. Lerones et al. 

(2016) investigated the moisture detection of historical building 

using TLS intensity data. All these studies indicate that the 

intensity data can be a useful tool to assess the state of 

conservation of materials of the historical buildings. However, 

in most of their studies the intensity data used was not corrected 

thus making their results less accurate and trustworthy. 

 

3. PROPOSED METHODS 

3.1 Intensity Data Correction 

The scanning geometry including the range between the scanner 

and target and incidence angle is the major factor that influence 

the original intensity data (Kashani et al., 2015). Therefore, in 

most previous work, correcting for scanning geometry was the 

main focus. As it was indicated in the related work section, the 

model-driven model is not appropriate for TLS intensity. 

Therefore, the data-driven model is chosen for intensity 

correction in this paper. Intensity correction means to convert 

the original intensity data  into a corrected value that is 

proportional or equal to the target reflectance (Höfle and Pfeifer, 

2007). According to the definition, the corrected intensity data 

 can be derived as follows: 

 

                                 (1) 

 

Where       = approximated intensity as a function of range 

                 = approximated intensity as a function of 

incidence angle 

                 = range between the scanner and target 

 = the reference range 

 = incidence angle 

 = the reference incidence angle 

 

In order to correct the intensity data, the specific forms of  

and   need to be estimated. Since the distance effect and the 

incidence effect are unrelated, so these two functions can be 

estimated separately. 

 

3.2 2D Intensity Image Generation  

The 3D point cloud can be transformed to 2D intensity images 

based on central projection. As illustrated in Figure 1, O is the 

scanning centre, P (x, y, z) is one of the point in the point cloud. 

P’ is a point when P is projected to plane XOY, r is the range 

between the scanning centre and P and ,  are the angles 

between OP’ and OP, OX respectively. 

 

 

Figure 1. Point projection  

 

The 3D point cloud can be generated to an intensity image 

according to the following steps: 
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        1. Calculate ,  and  of each point in the point cloud 

using the following formula: 

 

                       (2) 

 

         2. Based on the calculation results of formula (2), the 

maximum and minimum value of  and  can be 

derived. Set a sampling interval  and the total number 

of image rows  and columns  can be calculated: 

 

                   (3) 

 

        3. Calculate the row number  and the column number 

 of each point according to formula (4) and these 

two numbers are stored for the 3D re-projection purpose: 

 

                   (4) 

 

       4. Calculate the pixel value using the following formula (5). 

If there exist more than one point in a pixel, the average 

intensity of these points will be used in the calculation: 

 

                         (5) 

 

            Where      = original intensity interval 

                             = intensity after linear extension 

 

3.3 Image Classification  

The k-means algorithm is used for image classification in this 

paper. It is one of the simplest unsupervised learning algorithms 

that can classify a given data set through a certain number of 

clusters (assume k clusters) fixed a priori. The algorithm is 

mainly composed of the following steps: 

 

        1. Define k centroids, one for each cluster. In order to 

derive a better result, these centroids should be placed as 

much far as possible. 

 

        2. Take each point belonging to a given data set and 

associate it to the nearest centroid 

 

        3. When all points have been assigned a cluster, recalculate 

the position of the k centroids  

 

        4. Repeat step 2 and step 3 until the location of the k 

centroids no longer changes. This produces a separation 

of different clusters into groups from which the metric to 

be minimized in the following formula can be calculated: 

 

                   (6) 

 

Where           = a data point 

                     = the cluster centre 

 = a chosen distance measure between 

 and  

                     = the number of the data points 

 

4. EXPERIMENTS 

4.1 Range and Incidence Angle Effects Experiments 

To estimate the parameters of the respect range-intensity and 

incidence angle-intensity polynomial functions, two sets of 

experiments have been conducted. The experiments were 

conducted under laboratory conditions with the Faro Focus3D 

120 terrestrial laser scanner. The main system parameters of the 

scanner are listed in Table 1. The equipment utilized in the 

experiments are illustrated in Figure 2. A planar target printed 

on an A3 paper was used as the scanning target, which can be 

considered as a Lambertian target. The paper was fixed on the 

centre of a blackboard, on the side of which a goniometer was 

placed to enable the blackboard to rotate in a certain angle. 

 

System parameters Settings 

Emitted power 20mW 

Wavelength 905nm 

Beam divergence 0.009  

Maximum range 120m 

Field of view 360 305  

Table 1. Main system parameters of Faro Focus3D 120 

 

 

Figure 2. Equipment utilized in the experiments 

 

4.1.1 Range Effect Correction: The experiment was 

implemented at a fixed incidence angle of 0° from the scanner 

and target was set to move in steps of 0.25m from 1m to 10m, 

0.5m from 10m to 15m and 1m from 15m to 30m. For the range 

effect correction experiment, the scan resolution is set to 1/4, 

and the scan quality is set to 4 with a default field of view of 

360°×305°. The intensity data of the target are extracted by Faro 

Scene manually. The result of the range effect experiment is 

illustrated in Figure 3. The intensity data first decreases as the 

range increases from 1m to 2.5m, then it increases from 2.5m to 

5.5m, followed by a steep decrease from 5.5m to 14m. Finally, 

the intensity begins to level out for ranges over 14m. Therefore, 

the estimation function can be written as follows: 

 

            (7) 
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Where = polynomial 

coefficients 

                  = range from the scanner to the target 

 

 

Figure 3. Original intensity with respect to range and fitted 

intensity-range function 

 

Through polynomial fitting, the coefficients can be derived. The 

calculation values of each coefficient are listed in Table 2. 

 

n a b c d 

1 -36.1 249.2 -635.8 2271 

2 4.06 -71.5 412.5 996.7 

3 0.59 -19.71 181 1280 

4 0.02 -1.675 36.78 1321 

Table 2. Coefficients for fitted intensity-range function 

 

The correction method is applied to the original intensity data. 

As shown in Figure 4, after range correction, the variation of 

intensity data from different ranges is greatly reduced. 

 

 

Figure 4. Original intensity data and intensity data after range 

effect correction 

 

4.1.2 Incidence Angle Effect Correction: In order to derive 

the relationship between incidence angle and intensity, the 

incidence angel effect experiment was implemented at a fixed 

distance of 5 meters from the scanner. The target was set to 

rotate in steps of 5° from 0° to 80°. The scan resolution, the 

scan quality and field of view are set to be the same with the 

range effect experiment. The intensity data of the target are also 

extracted by Faro Scene manually. The result of the incidence 

angel effect experiment is illustrated in Figure 5. The intensity 

data decreases as the incidence angle increases so the estimation 

function can be written as follows:  

 

           (8) 

 

Where      =polynomial coefficients 

                =incidence angle 

 

Through polynomial fitting, the coefficients are derived and the 

calculation results are =345.3, =-944.4, =1173 and =1193. 

 

 

Figure 5. Original intensity with respect to incidence angle and 

fitted intensity-incidence angle function 

 

The intensity data before and after correction are shown in 

Figure 6. After correction, the intensity data acquired at 

different incidence angles are approximately equal. 

 

 
Figure 6. Original intensity data and intensity data after 

incidence angle effect correction 

 

4.2 Intensity Data Correction of the Study Areas 

The study areas chosen are some inner walls of an ancient 

Chinese pagoda, which has more than 1000 years’ history. 

During its long history, its inner walls have certain deterioration 

due to both natural factors and human vandalism. As shown in 

Figure 7, these inner walls show different degrees of superficial 

detachment. The initial scanning surveys were for the 3D 

modelling of this pagoda.  

 

   
(a)                                              (b) 

Figure 7. RGB images of some inner walls of the pagoda: (a) 

Wall 1; (b) wall 2 
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The raw scanning data obtained by TLS was first pre-processed 

and those points that were not interested in this study were 

eliminated. Then the intensity data of the study areas were 

corrected through the correction models generated to diminish 

the range and incidence angle effects. As the visual appearance 

of the 3D point cloud intensity shown in Figure 8, the intensity 

variances of the homogenous region on wall 1 decrease greatly 

and the variances of the non-homogenous region increase after 

intensity correction. It could also be shown in Figure 9 that in 

general the intensity variances decrease with correction. 

 

 
(a) 

 
(b) 

Figure 8. 3D point cloud intensity correction visualization: (a) 

Wall 1 before correction; (b) wall 1 after correction;  

 

 
(a)                                              (b) 

 

Figure 9. Histogram of intensity distribution of wall 1: (a) 

Original intensity; (b) corrected intensity;  

 

4.3 Damage Detection 

4.3.1 2D Intensity Image Generation: After intensity 

correction, the 3D point cloud was projected to generate the 

intensity image for classification based on the central projection 

method described in Section 3. The 3D point clouds with both 

the original intensity and corrected intensity are processed to 

generate 2D images. Figure 10 illustrates one of the intensity 

images generated. 

 

     
Figure 10. 2D intensity image generated of wall 1 

 

4.3.2 Image Classification: K-means classification 

algorithm is utilised to classify the intensity images. For the 

classification algorithm, eight predefined classes were used. 

Figure 11 shows the classification results of wall 1. Figure 11(a) 

is the classification result of the original intensity and Figure 

11(b) shows the damage areas detected. Figure 11(c) and 11(d) 

are the results of the corrected intensity. From visual assessment, 

both the original intensity and the corrected intensity can detect 

the damage areas. However, lots of wrongly-detected areas are 

found and some damage areas are undetected in the original 

intensity image. This is mainly because the original intensity is 

affected by several factors which makes it less accurate. 

Compared with the results of the original intensity, the 

classification results of the corrected intensity are more accurate. 

The major damage areas have been detected successfully and 

less wrongly-detected areas are found. However, there still exist 

some small damage areas that are failed to be detected. In 

Figure 12, the classification results of wall 2 are shown. Similar 

to the results of wall 1, the classification result of the corrected 

intensity is more accurate than that of the original intensity. The 

experiment results indicate the validity of corrected intensity 

data in damage detection.  

 

     
(a)                                          (b) 
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(c)                                          (d) 

 

Figure 11. Classification results of wall 1 (8 clusters): (a) 

Original intensity; (b) damage areas detected using original 

intensity; (c) corrected intensity; (d) damage areas detected 

using corrected intensity 

 

   
(a)                                          (b) 

   
(c)                                          (d) 

Figure 12. Classification results of wall 2 (8 clusters): (a) 

Original intensity; (b) damage areas detected using original 

intensity; (c) corrected intensity; (d) damage areas detected 

using corrected intensity 

 

4.3.3 3D Point Cloud Re-projection: In order to re-project 

the detected damage areas to the 3D point cloud, the images of 

the damage areas detected are utilized. The pixel locations of 

every damage area are first acquired. In comparison to the data 

stored in the 2D projection process, the 3D coordinates of the 

damage areas can be derived. In Figure 13, the damage areas of 

both wall 1 and wall 2 are shown in the 3D point cloud. 

 

 
 

(a)  

 

 
(b)  

Figure 13. Damage areas visualization in 3D point clouds: (a) 

Wall 1; (b) wall 2 

 

5. CONCLUSIONS 

In this paper we presented a damage detection method for 

historical architecture based on corrected TLS intensity data. 

The proposed method takes the advantage of the 3D laser 

scanning data for digital documentation of historical sites which 

is more efficient and accurate to a certain extent. Moreover, it 

can directly provide the information of certain damage of the 

structure without aids of other instruments. The damage 

information detected may be helpful for the professionals of the 

conservation sector to have more comprehensive knowledge of 

the current state of the historical site and its level of decay. 

Besides, it can further be integrated in the 3D models of the 

historical sites for long-term assessment and monitoring. 

However, the proposed method still has certain limitations. 

Some small damage areas are undetected which may be due to 

the correction model used. The model in this paper is derived 

from scanning an A3 paper which is considered as a Lambertian 

target. In fact, the surface of the walls is not perfect Lambertian 

target. Therefore, a more accurate correction model which 

considers the target surface properties needs to be investigated. 

In addition, the damage detection process needs to go through 

2D projection and 3D re-projection, which may be time 

consuming. Hence, in the future, the quantitative relationships 

between the intensity data and certain pathology need to be 

studied thus no further image processing is needed which can 

improve both the efficiency and accuracy of damage detection. 
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