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ABSTRACT: 

 

Aboveground biomass (AGB) estimation is critical for quantifying carbon stocks and essential for evaluating carbon cycle. In recent 

years, airborne LiDAR shows its great ability for highly-precision AGB estimation. Most of the researches estimate AGB by the 

feature metrics extracted from the canopy height distribution of the point cloud which calculated based on precise digital terrain 

model (DTM). However, if forest canopy density is high, the probability of the LiDAR signal penetrating the canopy is lower, 

resulting in ground points is not enough to establish DTM. Then the distribution of forest canopy height is imprecise and some 

critical feature metrics which have a strong correlation with biomass such as percentiles, maximums, means and standard deviations 

of canopy point cloud can hardly be extracted correctly. In order to address this issue, we propose a strategy of first reconstructing 

LiDAR feature metrics through Auto-Encoder neural network and then using the reconstructed feature metrics to estimate AGB. To 

assess the prediction ability of the reconstructed feature metrics, both original and reconstructed feature metrics were regressed 

against field-observed AGB using the multiple stepwise regression (MS) and the partial least squares regression (PLS) respectively. 

The results showed that the estimation model using reconstructed feature metrics improved R2 by 5.44%, 18.09%, decreased RMSE 

value by 10.06%, 22.13% and reduced RMSEcv by 10.00%, 21.70% for AGB, respectively. Therefore, reconstructing LiDAR point 

feature metrics has potential for addressing AGB estimation challenge in dense canopy area. 

 

 

*  Corresponding author 

 

1. INTRODUCTION 

Forest aboveground biomass (AGB) is a key biophysical 

parameter for assessing the health and productivity of 

vegetation ecosystems (Swatantran et al., 2011; Ediriweera et 

al., 2014). Forest aboveground biomass is usually used for 

carbon stock estimation, climate change and ecological 

modelling and has been increasing studied (Naesset et al., 2013). 

The accuracy of these models is largely dependent on the 

accuracy of AGB. Therefore, rapid and accurate estimation of 

forest AGB is critical for improving the accuracy and 

applicability of these models. However, how to accurately 

estimate forest AGB is a challenge issue so far. Conventional 

field methods for estimating forest AGB, such as forest 

inventories or destructive sampling, are the most reliable and 

accurate (Huang et al,. 2013). However, field measurements are 

often labor intensive, time consuming and costly, and the scope 

of the survey is also limited and cannot be investigated in a 

large scale (Ahmed et al., 2013; Ene et al., 2012). Therefore, 

direct observation methods are not applicable in large study 

areas. 

 

Remote sensing techniques can provide effective solutions to 

rapidly and repetitively collect land surface information at 

regional scales and then estimate forest AGB through these 

acquired data (Sun et al., 2011). Numerous studies have 

performed forest AGB estimations using optical remotely 

sensed data (Jin et al., 2009) and radar data (Gao et al., 2013). 

Forest AGB cannot be directly acquired through remote sensing 

data, it is estimated through empirical relationships established 

between the vegetations indices derived from remotely sensed 

data and the field measured biomass data. However, optical 

remotely sensed data is less sensitive to forest vertical structure 

due to the low penetration into forest canopies (Tao et al., 2014). 

Although Radar is capable of penetrating through cloud and 

forest canopies, it exits one phenomenon in study areas which 

high biomass or high canopy density can lower the estimation 

accuracy of vegetation parameters (He et al., 2013; Lu et al., 

2012). 

 

Different from optical sensors and radar instruments, LiDAR is 

an active remote sensing technology and can rapidly acquire 

three-dimensional point clouds of objects with high vertical and 

horizontal accuracies (Lefsky et al., 1999; Qin et al., 2015; Tsui 

et al., 2012). On the other hand, LiDAR technology can provide 

effective solutions to estimate forest AGB at the landscape or 

regional levels. Moreover, airborne LiDAR shows its great 

advantages which can be able to penetrate forest canopies and 

accurately obtain vertical structure parameters (Kobal et al., 

2015). It is therefore regarded as the best remote sensing 

technique for accurately estimating forest AGB (Kankare et al., 

2013). Many studies have successfully estimated forest biomass 

using airborne discrete-return LiDAR data. Luo et al (2017) 

extracted vertical structure features from discrete-return LiDAR 

point cloud, and these vertical structure features are based on 

the normalized vegetation point cloud. Lin et al (2014) 

evaluated the fusion of airborne discrete-return and full-

waveform LiDAR data in estimating AGB of subtropical forests. 

In their study, airborne discrete-return LiDAR derived metrics 

are extracted from normalized vegetation point cloud, but the    
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Figure 1. The study area and distribution of sampling sites (black points “.” are the center of field plots) 

 

accuracy of the normalized vegetation point is not taken into 

account.  

 

No matter what structure feature metrics are extracted from the 

point cloud data, it is necessary to establish the precise 

normalized vegetation point cloud data. Normalized vegetation 

point cloud is the elevation data of point cloud relative to the 

surface topography. If the canopy density is large, the 

probability of the LiDAR signal penetrating the canopy is lower, 

and the number of point clouds reaching the ground is very 

small, which reduces the estimation accuracy of vegetation 

parameters (Luo et al., 2017). To get the accurate normalized 

vegetation point cloud data, we need to establish precise DTM. 

If the ground points are few, the DTM needs to be interpolated 

in a large range. The result is relatively imprecise, which leads 

to the inaccuracy of the structure features acquired. Feature 

reconstruction has been widely used in image field. In this 

paper, we propose a strategy of first reconstructing LiDAR 

feature through Auto-Encoder neural network and then using 

the reconstructed feature to estimate forest aboveground 

biomass. The specific objectives of this study were to: 1) 

establish biomass prediction models using direct features and 

reconstructed features respectively; 2) assess the potential of 

first reconstructing LiDAR feature then estimating biomass for 

improving biomass estimation accuracy. 

2. MATERIALS  

2.1 Study Area 

The study area is located in Qilian Mountain Dayekou, Zhangye 

City, Gansu Provinces of northwest China (Figure1). The 

weather is mainly affected by the high latitude air circulation. 

The study area is the main body of the ecosystem in the Qilian 

Mountains. It is a study area chosen by an airborne, satellite-

borne and ground-based remote sensing experiment, Waterhed 

Allied Telemetry Experimental Research (Li et al., 2009). The 

elevation ranges from 2500m to 3800m above sea level with 

slopes below 15 degrees. It covers three vegetative climate 

zones and significantly affects soil/water conservation and 

biodiversity protection.  The forest belongs to a coniferous-

dominated forest with dense canopy cover. The dominant tree 

species is Picea crassifolia, occupying about 95 percent of the 

whole forestland in study area. 

 

2.2 Airborne LiDAR Data 

The discrete-return LiDAR data were acquired for Dayekou 

study area on June 23, 2008 using LiteMapper-5600 airborne 

laser scanning system. The fights were carried out over the 

sample study area with a nominal height above ground of 800m,  
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LiDAR metrics Description 

H_p(1,5,10,20,30,40,50,60,70,80,90,95,99) Percentile of LiDAR height 

H_min Minimum of LiDAR height 

H_max Maximum of LiDAR height 

H_mean Mean of LiDAR height 

H_sd Standard deviation of LiDAR height 

H_var Variance of LiDAR height 

H_cv Coefficient of variation of LiDAR height 

H_mode Mode of LiDAR height 

AIH_h(1,5,10,20,25,30,40,50,60,75,80,90,95,99) Accumulative height of LiDAR height 

Density_metrics(0,1,2,3,4,5,6,7,8,9) The density of the slice return LiDAR points 

R_cover Percent of canopy returns (canopy returns/total returns), a 

description of canopy cover 

Elev_canopy_relief_ratio Crown fluctuation 

Elev_kurtosis_z Kurtosis of LiDAR height 

Table 1. Summary of the feature metrics derived from the LiDAR data used as candidate variables for estimating biomass

leading to a pulse density of approximately 
2

pts / m4.54 . The 

LiteMapper-5600 airborne laser scanning system was used and 

configured to emit laser pulses of 3.5 ns at 50 kHz in the near- 

infrared band (wavelength = 1550 nm) with a beam divergence 

fixed with 0.5 mrad. Geographical coordinates (easting, 

northing and elevation) were recorded by a dual-frequency 

differential Global Positioning System with an inertial 

measurement unit. The horizontal and vertical accuracy of the 

instrument was 0.1 m and 0.3 m (Li et al., 2014), respectively. 

All of the points were geo-referenced to a projection system of 

universal transverse Mercator (UTM) Zone 47N/WGS-84 for 

extracting validation samples expediently in the later LiDAR 

points processing. 

2.3 Field Measurement 

In the study area, field measurements were conducted on two 

field plots distributing over the flight route (Figure 1). The 

entire artificial sample plot is divided into super-plot and line-

plot. The super-plot was a 100 100m m   area with a slope of less 

than 20 degrees and it was divided into 16 subplots with the 

size of 25 25m m . The line-plot was a sample line consisting of 

20 subplots with the size of 20 20m m  distributed along the 

direction of flight. The interval between the subplots in the line-

plot was 50 meters. The total number of subplots was 36. The 

center coordinate of each subplot was positioned by differential 

global positioning system (DGPS) station. Each DGPS is placed 

in an open area to ensure its position accuracy. The tree height 

and diameter at breast height (DBH) were measured using a 

laser hypsometer and a diameter tape respectively. 

 

2.4 Biomass Calculation 

The individual tree biomass was calculated based on their DBH 

and height according to the empirical relative growth equations. 

Subplot forest AGB was calculated as the sum of individual tree 

AGB in each subplot. 

 

   
0.8665

2
- =0.0478 HDBHstock biomass

 
 
 
 

   (1) 

  
0.8905

2
- =0.0061 HDBHbranch biomass

 
 
 
 

   (2) 

     
0.4701

2
- =0.2650 HDBHleaf biomass

 
 
 
 

   (3) 

     
0.5779

2
- =0.0342 HDBHfruit biomass

 
 
 
 

   (4) 

 

where DBH= diameter at breast height(cm) 

 H=tree height(m) 

 

3. METHODS 

3.1 Processing of LiDAR Data 

In order to extract the vertical structural features of the point 

cloud, we preprocess the original point cloud data. Original 

LiDAR point datasets usually contain several outliers that are 

far above or below the earth surfaces, and it will influence the 

accuracy of extracted features. In the study area, we first remove 

some outliers manually. Then LiDAR point clouds were 

classified as canopy and ground returns using the adaptive 

triangulation network filter algorithm through Terrasolid 

software. A interpolated digital terrain model (DTM) with the 

grid cell size of 1m resolution was generated based on the 

ground points. Using the this DTM, we can remove the 

influence of topography and obtain DTM normalized LiDAR 

points (Nie et al., 2017). Then heights of non-ground points 

were normalized and feature metrics were calculated based on 

DTM normalized LiDAR points. 

 

3.2 LiDAR Metrics Calculation 

A variety of LiDAR-derived metrics can be used to estimate 

AGB, including minimum height, maximum height, mean 

vegetation return height, LiDAR height percentiles and canopy 

cover (Bright et al., 2012). And these feature metrics calculated 

from DTM normalized LiDAR points were coincide with the 

previous studies (Cao et al., 2014; Chen et al., 2012). For 

canopy cover, a height threshold was set 2.0 m to separate 

canopy returns from ground returns in this study. In addition, 

density metrics, accumulative height of LiDAR height and 

kurtosis of LiDAR height are also highly correlated with 

aboveground biomass. Therefore, we extracted all these feature 

metrics from normalized points, totaling 47 features. The 

optimal LiDAR metrics for estimating biomass may vary with 

vegetation type, environment and landscape of the study area. In 

this study, we selected various LiDAR feature metrics to obtain 

the most effective biomass estimation model. A summary of 

LiDAR metrics used in this study is provided in Table 1. 
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Figure 2. Ground-based AGB value (Mg/ha) versus predicted AGB value (Mg/ha) from the regression model using LiDAR feature 

metrics. (a) and (b) are the regression results using original LiDAR feature metrics by multiple stepwise regression (MS) model, (c) 

and (d) display the regression results using reconstructed LiDAR feature metrics by partial least square regression (PLS) model. 

 

Variables 
MS Regression  PLS Regression 

R2 adj.R2 RMSE RMSEcv  R2 adj.R2 RMSE RMSEcv 

Original Feature Metrics 0.706 0.698 16.6841 16.8531  0.775 0.736 15.0054 15.1673 

Reconstructed Feature Metrics 0.732 0.724 15.9534 16.0874  0.885 0.855 12.4226 12.5954 

Table 2. Summary of estimation accuracies of AGB using original LiDAR feature metrics and reconstructed LiDAR feature metrics 

respectively. Two types of regression models represent the better ability of estimating AGB using reconstructed feature metrics. 

 

3.3 Reconstructing Feature Metrics by Auto-Encoder 

Network 

According to the study area, the biomass regression can be 

directly carried out if the feature metrics were extracted from 

accurate normalized vegetation points. However, the features 

extracted from the area with insufficient vegetation points are 

deficient. Whereas, we can learn effective feature expression 

from accurate features extracted from sufficient vegetation 

points in some low dense forest area. Auto-Encoder neural 

network is an algorithm that can actively search the relationship 

between features and has the ability of repairing features. 

Moreover, Auto-Encoder is an unsupervised algorithm, all the 

study area data can be trained. We extracted 100000 samples 

from the study area, each of which has a size of 25 25m m  . For 

each of these samples, we extract the LiDAR features 

mentioned above as training samples. At the same time, we have 

36 samples with biomass information as our validation samples. 

Before the training samples are input into the network, we 

normalized the data firstly. Auto-Encoder adopts generally L2 

regularization, but L2 regularization is susceptible to noise and 

high variance data. Unfortunately, our data exactly exits this 

serious problem. To address this problem, we use L1 

regularization which is widely applied in image inpainting. For 

specific network structure, it contains an input layer with 47 

neurons, a hidden layer with 36 neurons and an output layer 

with 47 neurons, the activation function is the Relu. We apply 

stochastic gradient descent(SGD) to train the Auto-Encoder 

with a mini-batch size of 128. In SGD, a learning rate of 0.0001 

and a momentum of 0.9 are to be applied. 

 

3.4 Statistical Analyses and Modelling 

In this study, two types of model regressions were used to 

estimate forest biomass, i.e, multiple stepwise regression (MS) 

and partial least square regression(PLS). Moreover, log-

transformed biomass values and feature metrics were tested. 

The biomass estimation results from original feature metrics and 

reconstructed feature metrics were compared and analyzed to 
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assess the potential of the reconstruction of LiDAR feature 

metrics for estimating biomass. 

 

The leave-one-out-cross-validation (LOOCV) is an effective 

method to evaluate the generalization capability of regression 

models, being particularly useful for models with only a small 

number of samples available (Crespi et al., 2008; Peduzzi et al., 

2012). To assess the reliability of these models, the LOOCV 

was performed, and the predicted residual sum of squares 

(PRESS statistic) was calculated. To validate the model 

predictive power, the root mean square error (RMSECV) from 

the cross validation analysis was calculated based on the 

PRESS statistic and the number of observed samples（Nie et al., 

2017）. The close agreement in magnitude between RMSE and 

RMSECV suggests that the fitted model tends to have less 

overfitting and more generalization (Jensen et al., 2008). 

 

For MS regression, a single regression analysis was performed 

firstly for each metric and then a stepwise multiple regression 

analysis (criteria: probability of F to enter < = 0.05; probability 

of F to remove > = 0.1) was performed for all of the derived 

LiDAR feature metrics to determine the optimal independent 

variables and biomass estimation models. Because of the 

logarithm transformation of all the predicted metrics and plot 

biomasses, the simple linear model is applicable instead of a 

nonlinear regression model. On the other hand, we noticed that 

LiDAR feature metrics have multicollinearity problems because 

of high correlations among the metrics (Laurin et al., 2014). 

Fortunately, PLS regression can effectively resolve small 

samples and multicollinearity problems that are often faced in 

multiple linear regression (Chen et al., 2012), and it has been 

increasingly used in vegetation biomass estimation field. In our 

experiment, we selected the optimal number of latent variables 

using the LOOCV method to avoid overfitting of PLS 

regressions. 

 

4. RESULTS AND DISCUSSION 

To assess the availability of reconstructing feature metrics, we 

performed MS regression and PLS regression using 36 ground-

based AGB against original LiDAR feature metrics and 

reconstructed LiDAR feature metrics, respectively. The 

corresponding experiment results were listed in Table 2 and 

Figure 2. For MS regression, the results showed that LiDAR 

feature metrics directly derived from LiDAR discrete-return 

point data were relatively weakly related to 

biomass(R2=0.698,RMSE=16.6841(Mg/ha),RMSEcv=16.8531(

Mg/ha)) comparing with reconstructed LiDAR feature metrics 

(R2=0.724,RMSE=15.9534(Mg/ha),RMSEcv=16.0874(Mg/ha)), 

and we noticed that improvement of biomass estimation did not 

perform obviously (Figure 2 (a) (b)). The MS regression 

performed low prediction ability for AGB due to its modeling 

limits among these feature metrics. 

 

On the other hand, the reconstructed feature metrics performed 

much better than original feature metrics when using PLS 

regression. It was because that the PLS regression can 

effectively resolve multicollinearity problems especially facing 

small samples. We can find that R2 improved by 16.16%, 

RMSE and RMSEcv reduced by 17.21%, 16.95% respectively 

comparing with original LiDAR feature metrics (Table 2). It 

further proved that reconstructed feature metrics have strong 

prediction ability for AGB estimation. The Auto-Encoder neural 

network has powerful feature expression ability learned from 

numerous train samples and can actively find the relationship 

between various features. Therefore, we can make use of Auto-

Encoder neural network to restructure our structure feature 

metrics extracted from dense area. It could make contribute to 

improving the accuracy of the AGB regression and our 

experiments have proved this point. 

 

5. CONCLUSION 

Our study aimed to addressing the task that AGB estimation can 

hardly be carried out in dense vegetation areas. For 

reconstructed feature metrics, the structure parameters are good 

indicators of forest AGB. While the structure parameters 

derived directly from discrete-return LiDAR data showed 

relatively weak correlation with ground-based AGB due to 

insufficient number of ground points. It means that our method 

can eliminate the problem of insufficient points and get good 

AGB estimation results. This is our main contribution to the 

AGB estimation. Additionally, the regression model is an 

essential factor for AGB estimation accuracy. Our results 

showed that PLS regression performed better than MS 

regression mode, this is due to the existence of a serious 

multicollinearity problem in our characteristic variables. 

 

In summary, the results showed that reconstructing structure 

feature parameters has the potential for improving biomass 

estimation accuracy. The methods developed and tested in this 

study could be useful for accurately estimating biomass using 

discrete-return LiDAR data, and the method developed in this 

study may also be used in similar studies. However, the AGB 

estimation was only conducted in a coniferous forest and may 

not be directly applicable to different areas with different 

vegetation types. Therefore, future works should focus on 

testing a wide range of forest types. 
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