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ABSTRACT 
 
Mapping of trees plays an important role in modern urban spatial data management, as many benefits and applications 
inherit from this detailed up-to-date data sources. Timely and accurate acquisition of information on the condition of 
urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which 
are critical to building up strategies for sustainable development. The conventional techniques used for extracting trees 
include ground surveying and interpretation of the aerial photography. However, these techniques are associated with 
some constraints, such as labour intensive field work and a lot of financial requirement which can be overcome by 
means of integrated LiDAR and digital image datasets. Compared to predominant studies on trees extraction mainly in 
purely forested areas, this study concentrates on urban areas, which have a high structural complexity with a multitude 
of different objects. This paper presented a workflow about semi-automated approach for extracting urban trees from 
integrated processing of airborne based LiDAR point cloud and multispectral digital image datasets over Istanbul city 
of Turkey. The paper reveals that the integrated datasets is a suitable technology and viable source of information for 
urban trees management. As a conclusion, therefore, the extracted information provides a snapshot about location, 
composition and extent of trees in the study area useful to city planners and other decision makers in order to 
understand how much canopy cover exists, identify new planting, removal, or reforestation opportunities and what 
locations have the greatest need or potential to maximize benefits of return on investment. It can also help track trends 
or changes to the urban trees over time and inform future management decisions.
 
 

1. INTRODUCTION 
 

Urban trees have many advantages such as preserving 
energy, improving water quality, minimizing greenhouse 
gasses and many other environmental pollutants, as well 
as connecting urban dwellers with nature (McPherson, 
2006, Nowak D. J. 2007). To exploit these benefits, 
information about location, composition and extent of 
urban trees is often needed for planning and 
management purposes. This information can be 
employed for a different type of analysis, like vegetation 
growth tracking or monitoring, appraisal of trees 
condition, etc. Conventionally, this information is 
obtained through field surveying methods which are 
highly expensive, laborious (tedious), time-consuming 
and usually cannot be carry out over large areas. In spite 
of efforts and capital spent on the conservation of trees, 
many cities often do not have an all-inclusive 
information on their conditions (Yang, J. 2012), which is 
a major limitation for actualizing their benefits (Zhang, 
and Qiu, 2012). In order to realize numerous economic, 
environmental and sustainable decision-making 
processes, an accurate, up-to-date and in-depth 
information on spatial distributions, extents and health 
conditions of urban ecosystem is necessary. 

Advancements in remote sensing tools have introduced 
laser technology which bridges the gap of remote 
sensing imagery inability to pass through the trees 
canopy. The technology accords distinctive advantages 
for management of urban natural resources. LiDAR as a 
remote sensing technology, is a preference tool, which 
presents a promising potentiality for mapping and 
studying natural resources such as urban forests 
(Plowright, 2015). Light Detection And Ranging 
(LiDAR) is an evolving technology which has the ability 
to generate an accurate, intense, cost effective and a 
well-defined 3D representation of features on and above 
ground surface especially, over wide spatial scales 
(Carter, et al. 2012, Reitberger, et al. 2009). The 
capability of LiDAR to pass through vegetation has 
attracted remarkable concern from the field of natural 
resources management (e.g. Hudak, et al. 2009, Coops, 
et al., 2007, Patenaude, et al., 2004, Seielstad and 
Queen, 2003, Vierling, et al, 2008, Woods, et al. 2008, 
Holmgren, et al. 2004, Zhang, C. 2010, etc.). Even 
though considerable research has been carried out 
regarding LiDAR applications in forestry (e.g. Brolly, et 
al. 2013, Lang, et al. 2006, Hyypa, et al. 2008, Hyypa, et 
al. 2009), its usage in the study of urban trees has been 
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limited. As LiDAR applications in urban trees mapping 
expand, therefore, automated approach for tree detection 
technique is most likely to increase (Heinzel, et al. 
2008). 
 
However, LiDAR systems have no band which makes it 
insufficient for vegetation classification, especially in 
urban forests with diverse species and high spatial 
heterogeneity. Digital multispectral imagine, usually 
possesses many distinct bands, therefore, exhibit a great 
potential in identifying and mapping tree feature with 
their rich spectral contents. Airborne LiDAR data and 
digital imagery are highly complementary (Caldwell, J. 
2005), the images can validate the filtering accuracy 
(Jawak, et al. 2013) while the elevation information 
from LiDAR can be used to ortho-rectify images 
datasets (Flood, 2002, Savopol, et al. 2004). Highly 
dense LiDAR data with multiple returns per square 
meter would be overwhelming for tree crown depiction 
and for determination of crown shape while image 
spectral properties can be used to differentiate tree 
objects (Holmgren, et al. 2008, MacFaden, et al. 2012). 
Therefore, data products which are highly 
information-rich can be created. It is assumed that both 
data sources concurrently will be more successful for 
trees detection in contrast with any of them alone (Chen, 
et al. 2005, Zhang, C. 2010). 
 
The objectives of this paper includes extraction of 
shadow free vegetation features from the digital images 
using shadow index and NDVI techniques, automated 
extraction of 3D information about vegetation features 
from the integrated processing of shadow free vegetation 
features image and LiDAR point cloud datasets and 
finally, automated extraction of trees from the vegetation 
objects based on multiple echo attribute of the LiDAR 
data. The remaining part of this paper describes, the 
study area and datasets used in section 2, the extraction 
technique in section 3, the results and discussion in 
section 4 and finally, the conclusion in section 5. 
 
 

2. STUDY AREA AND DATA 
 
2.1 Study Area 
 
The study area is located in Besiktas district inside the 
city center of Istanbul in northwestern Turkey with a 
total area of 5,343 km2 (Başar, et al. 2011).  Istanbul is 
among the most special cities in the world with its 
position as a bridge between Europe and Asia. It is 
positioned between 280 01’ and 290 55’ eastern 
longitudes and 410 33’ and 400 28’ latitudes. Bosphorus 
strait (Figure 1) which connects the Sea of Marmara at 
the north and the Black Sea to its south divides the city 
into an Asian city closest to Europe and the closest 
European city to Asia (Gregory, Timothy E. 2010, Efe, 
et al. 2011). Istanbul is a typical urban area with 
complex spatial assemblages of vegetation, buildings, 
roads, and other man-made features. 
 

 
 

Figure 1. Map of Istanbul showingg the study area. 
 

2.2 Datasets Used 
 
The datasets used in this study were collected in 2013 by 
BIMTAS ccompany in Istanbul, Turkey, using airborne 
laser scanning system. These datasets include airborne 
multispectral digital image which has Red, Green, Blue 
and Near Infrared bands and LiDAR point cloud. 
 
2.2.1 Airborne Multispectral Digital Image 
 
The multispectral images provide more details on spatial 
geometry and spectral information about the study area 
useful for detection and extraction of vegetation 
features. These include RGB bands (Figure 2) and NIR 
(Figure 3) band images at 0.1m and 0.5m spatial 
resolution respectively. 
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Figure 2. RGB bands image 
 

 
 

Figure 3. NIR band image 
 
2.2.2 Airborne LiDAR Point Cloud 
 
The LiDAR (Figure 4) data provides an accurate, 
georeferenced and highly effective 3D spatial 
information about the shape and surface characteristics 
of the study area through x, y and z points commonly 
referred as point cloud. It provides accurate height 
information which is missing in the digital images and 
also supporting information about crown shape 
(Hyyppä, et al. 2008). 

 
 

Figure 4. Airborne LiDAR point cloud. 
 

 
3. EXTRACTION TECHNIQUE 

 
This section presents techniques and steps followed in 
order to achieve objectives of this paper See Figure 5, 
below for more details: 
 

 
 

Figure 5. Work flow chart 
 

3.1 Image Geo-Rectification 
 
The NIR image does not have the same pixel depth and 
spatial resolution with the multispectral image. 
Consequently, the NIR image which has 0.5m spatial 
resolution and 16bit pixel depth has been geo-rectified in 
order to have the same spatial reference system with the 
RGB image which has 0.1m spatial resolution and 8bit 
pixel depth.  
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3.2 Shadow Index 
 
Shadow index is an indicator which describes presence 
of shadow objects in a digital image. The presence of 
shadows of trees is a major problem during 
classification. Therefore, the shadow values of the 
digital image were determined using Equation 1 as given 
below: 
 
SI = √ (256 – Red) (256 – NIR)   (1)  (Mustafa, et al. 
2015). 
 
where: NIR and Red are the Near Infrared and the Red 
bands respectively.  
 
Furthermore, the shadow index image which provides 
precise shadows information was thresholded to detect 
absolute information. The threshold value for shadow 
image was estimated empirically, as 180. By utilizing 
this threshold value, a binary image was obtained with a 
value of 0 indicating the non-shadow objects and a value 
of 1 indicating the shadow objects. 
 
3.3 Normalized Difference Vegetation Index (NDVI) 
 
NDVI is an index of plant “greenness” or photosynthetic 
activity (Blanco, et al. 2008, Mróz, et al. 2004). It is 
based on the observation that different surfaces reflect 
different types of light differently. Photosynthetically 
active vegetation, in particular, absorbs most of the Red 
light that hits it while reflecting much of the Near 
Infrared light. Vegetation that is dead or stressed reflects 
more Red lights and less Near Infrared light. Likewise, 
non-vegetated surfaces have a much more even 
reflectance across the light spectrum. By taking the ratio 
of Red and Near Infrared bands from a remotely-sensed 
image, an index of vegetation “greenness” which ranges 
from -1 to +1 can be defined. 
 
Therefore, the NDVI values of the digital image were 
determined on a per-pixel basis using Equation 2 as 
given below: 
 
NDVI = (NIR - Red) / (NIR + Red)  (2)  (Mustafa, et 
al. 2015). 
 
where; NIR and Red are the Near Infrared and the Red 
bands respectively. 
 
Furthermore, the NDVI image which provides precise 
information about vegetation features was thresholded to 
detect absolute information. The threshold value for 
NDVI image was estimated empirically, as 0.6. By 
utilizing this threshold value, a binary image was 
obtained with a value of 0 indicating non-vegetation 
features and a value of 1 indicating vegetation features. 
 
3.4 Shadow Free Vegetation Features Image 
 
Shadow free vegetation features image was determined 
by masking out shadow objects from the NDVI binary 
image. Hence, a binary image was created with a value 

of 0 indicating non-vegetation objects and a value of 1 
indicating shadow free vegetation objects. 
 
3.5 Extracting 3D Information about Vegetation 
Features 
 
In order to achieve this task, the shadows free vegetation 
features image and the LiDAR datasets were integrated 
to extract 3D information about the vegetation features. 
This task has been completely processed in an 
automated way using the Python programming.  
 
3.6 Extracting 3D Information about Trees Features 
 
The objects of interest (OI) in this study are the tree 
features. However, NDVI only helps to distinguish 
between vegetated and non-vegetated land cover, but it 
fails to discriminate shrubs and grasslands from trees. 
The reason is that the NDVI of a shrub and dense 
grasslands may have the same or nearby NDVI value as 
that of a tree object. Therefore, in order to get rid of any 
form of non-tree features, the LiDAR data was filtered 
based on its multiple echo (number of returns) attribute. 
The number of returns of a laser pulse usually helps to 
determine which feature the reflected pulse came from 
(e.g., ground, tree, building and so on). Basically, laser 
pulse with a multiple return are normally associated to 
vegetation objects while laser pulse with a single return 
are normally associated to features other than vegetation 
(Diaz, 2011). 
 
Consequently, all LiDAR points with total number of 
return values equal to one (i.e. multiple echo = 1) have 
been filtered out from the vegetation LiDAR data while 
LiDAR points with total number of return values greater 
than one (i.e. multiple echo >1) were retained. The 
processing of the above task was completely 
accomplished in an automated way using the Python 
programming. 
 
 

4. RESULT AND DISCUSSION 
 
This section will exploit, discuss and interpret the 
research findings, based on the research methodology 
established in the previous section which is also in 
accordance with the research objectives as stipulated in 
this paper. The research results have been analyzed 
empirically with the goal of answering research 
questions in order to facilitate convincing conclusions 
which will in turn support decision making. 
 
4.1 Shadow index 
 
It has been evidently proved that the presence of 
shadows poses a great challenge during vegetation 
objects extraction from the digital image (Mustafa, et al. 
2015). This is due to the fact that NDVI normally fails to 
distinguish between the spectral reflectance of 
vegetation objects and that of their shadows. Based on 
this reasons, therefore, all areas identified as shadows 
have been removed from the digital image. This has 
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been achieved by applying Equation 1 given in section 3 
to calculate shadow values of the digital image. The 
result of shadow index (Figure 6) is a new image file 
with shadow values ranging from 1 to 239. The white 
pixels which have high shadow values represent shadow 
objects while the black or dark grey pixels which have 
low shadow values represent objects without shadow. 
 

 
 

Figure 6. Shadow index image 
 

After applying an absolute threshold value to the shadow 
index image, a binary image (Figure 7) was determined 
with a value of 0 representing non-shadow objects (i.e. 
black colour pixels) and a value of 1 representing the 
shadow objects (i.e. white colour pixels). The threshold 
value for shadow index image was estimated 
empirically, as 180. 
 

 
 
Figure 7. Shadow index image after applying a threshold 
 

4.2 NDVI 
 
The NDVI which is an index of plant greenness or 
photosynthetic activity has been used to calculate NDVI 
values of the digital image on a per-pixel basis by 
applying Equation 2 given in section 3. This helps to 
distinguished pixels which belong to vegetation features 
from pixels which belong to non-vegetation features on 
the digital image (Geerken, et al 2005, Moleele, et al. 
2001). The output of this operation is a new image file 
(Figure 8) with values ranging from -1.0 to +0.98. The 
white pixels which have high NDVI values represent the 
vegetation objects while the black or dark grey pixels 
which have low NDVI values represent the 
non-vegetation objects. 
 

 
 

Figure 8. NDVI image 
 
After applying an absolute threshold value to the NDVI 
image, a binary image (Figure 9) was created with a 
value of 0 indicating the non-vegetation features (i.e. 
black colour pixels) and a value of 1 indicating the 
vegetation features (i.e. white colour pixels). The 
threshold value for NDVI image was estimated 
empirically, as 0.6. 
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Figure 9. NDVI image after applying a threshold. 
 
4.3 Shadow Free Vegetation Image 
 
This has been achieved by removing shadow objects 
from the NDVI binary image. Thus, a binary image was 
created with a value of 0 indicating non-vegetation 
objects (i.e. black colour pixels) and a value of 1 
indicating shadow free vegetation objects (i.e. white 
colour pixels). After the shaded areas have been 
removed, the final output (Figure 10) was then turned 
into an image which has only vegetation features 
without shadow objects. In this way, it became possible 
to get rid of the confusing spectral problem between 
reflected spectra of trees and their shadows. 
 

 
 

Figure 10. Shadow free vegetation image. 
 

4.4 Extracting 3D Information about Vegetation 
Features 
 
3D information about vegetation features (Figure 11) has 
been obtained in a fully automated fashion by extracting 
LiDAR points which belong to vegetation features from 
integrated processing of shadow free vegetation image 
and LiDAR points cloud datasets. 
 

 
 

Figure 11. 3D vegetation features 
 
4.5 Extracting 3D Information of Tree Features 
 
It is important to note that the object of interest in this 
study is tree object. However, critical analysis of 
previously extracted LiDAR data of vegetation features 
reveals that it consisted of trees and other unwanted 
vegetation objects such as grasslands and shrubs. This is 
due to the fact that the result obtained from NDVI only 
provide information about photosynthetically active 
vegetation or vegetation “greenness” which helps to 
distinguish between vegetated and non-vegetated land 
cover, but it fails to discriminate shrubs and grasslands 
from trees. This is owing to the fact that the NDVI value 
of a shrubs and dense grasslands may have the same or 
nearby value as that of a tree object. Therefore, in order 
to get rid of any form of non-tree features, the extracted 
vegetation LiDAR data was filtered based on its multiple 
echo properties. This LiDAR attribute helped to 
distinguish between trees and other non trees vegetation 
features (Carter, et al. 2012).  
 
Therefore, all LiDAR points which have 1 as a total 
number of returns value (i.e. multiple echo = 1) have 
been removed and LiDAR points with total number of 
return values greater than one (i.e. multiple echo >1) 
were retained (Figure 12). This has also been done in a 
fully automated fashion using the developed algorithm. 
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Figure 12. Trees extracted based on multiple echo. 
 
 

5. CONCLUSION 
 
This paper presented a workflow about semi-automated 
approach for urban trees extraction from integrated 
processing of airborne based LIDAR point cloud and 
multispectral digital image datasets. The paper proved 
that the integrated datasets are suitable technology and 
viable source of information for city managers to 
analyze, evaluate and enhance urban landscape patterns 
in order to gain a better understanding of the current 
composition, spatial distribution and states of trees in an 
urban area. Furthermore, the extracted information 
provides a snapshot of location, status and extent of trees 
in the study area which will be useful to city planners 
and other urban ecosystem decision makers to 
understand how much canopy cover exists, identify new 
planting, removal, or reforestation opportunities and 
what locations have the greatest need or potential to 
maximize benefits of return on investment. It can also 
help track trends or changes to the urban trees over time 
and inform future management decisions. 
 
Although LiDAR points extracted based on multiple 
echo have removed significant amount of unwanted 
vegetation features from the dataset. However, 
systematic analysis of the extracted data reveals 
presence of leftover of these undesirable vegetation 
features such as shrubs which must have to be 
completely discarded from the dataset. Therefore, future 
work should concentrate on developing an approach or 
techniques which can be used to completely filter out 
these undesirable LiDAR points of non-tree features 
from the dataset. In addition, the designed algorithms 
have so far only been tested over the Istanbul urban area. 
Further research is needed in other urban areas with 
different species, forest compositions and structural 
complexity in order to examine the robustness and 
extensibility of these techniques. 
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