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ABSTRACT: 
 
Light Detection and Ranging or LiDAR data is a data source for deriving digital terrain model while Digital Elevation Model or 
DEM is usable within Geographical Information System or GIS. The aim of this study is to evaluate the accuracy of LiDAR derived 
DEM generated based on different interpolation methods and slope classes. Initially, the study area is divided into three slope 
classes: (a) slope class one (0° – 5°), (b) slope class two (6° – 10°) and (c) slope class three (11° – 15°). Secondly, each slope class is 
tested using three distinctive interpolation methods: (a) Kriging, (b) Inverse Distance Weighting (IDW) and (c) Spline. Next, 
accuracy assessment is done based on field survey tachymetry data. The finding reveals that the overall Root Mean Square Error or 
RMSE for Kriging provided the lowest value of 0.727 m for both 0.5 m and 1 m spatial resolutions of oil palm area, followed by 
Spline with values of 0.734 m for 0.5 m spatial resolution and 0.747 m for spatial resolution of 1 m. Concurrently, IDW provided the 
highest RMSE value of 0.784 m for both spatial resolutions of 0.5 and 1 m. For rubber area, Spline provided the lowest RMSE value 
of 0.746 m for 0.5 m spatial resolution and 0.760 m for 1 m spatial resolution. The highest value of RMSE for rubber area is IDW 
with the value of 1.061 m for both spatial resolutions. Finally, Kriging gave the RMSE value of 0.790m for both spatial resolutions. 
 
 

 
 

1. INTRODUCTION 

Light detection and ranging (LiDAR) can be a source of data for 
generating precise and directly georeferenced spatial 
information about the shape and surface characteristic of the 
earth. LiDAR is an established method for collecting very dense 
and accurate elevation data across landscapes, shallow-water 
areas and project sites. It is a type of an active remote sensing 
technique which is similar to radar but uses laser light pulses 
instead of radio waves for capturing 3D point clouds of the 
earth surface (Habib et. al., 2005).    
 
In recent years, LiDAR has become the main data source for 
producing high resolution digital elevation model (DEM) or 
digital terrain model (DTM) (Raber et. al., 2007). Typically, a 
spatial resolution of 1 metre or higher can be obtained from 
various sources for example high density airborne LiDAR, high 
resolution aerial photogrammetry and high resolution satellite 
stereo images. On the other hand, LiDAR derived elevation has 
absolute accuracy of about 6 to 12 inches (15 to 30 centimetres) 
for older data and 4 to 8 inches (10 to 20 centimetres) for more 
recent data. Concurrently, relative accuracy (e.g., heights of 
roofs, hills, banks, and dunes) is even better.  
 
Nowadays, airborne LiDAR is a powerful tool to survey high 
resolution and high accuracy DEM for large areas (Wehr and 
Lohr, 1999). The output of an  airborne LiDAR survey is a 
massive point clouds that needs to be interpolated in order to 
provide  a  continuous  surface  for  final  users  (Kraus  and 
Pfeifer,  2001). The choice of interpolator and the cell size play 
an important role for determining the quality of LiDAR-derived 
DEM (Bater and Coops, 2009). Figure 1.1 shows the result of 
point clouds that have been collected. 

 
Figure 1. Example of point clouds captured by LiDAR. The 

yellow points show the treetop while the purple points indicate 
ground points. 

 
1.1 Digital Elevation Model 

DEM is defined as a representation of bare earth surface, void 
of vegetation and urban features (Wechsler, 2011). 
Concurrently, it is a computer representation of the earth’s 
surface (Wechsler, 2003). Nowadays, the demand for a more 
accurate DEM with higher spatial resolution is increasing due  
to  the  variety  of  Geographic Information System (GIS)  
related  applications  such  as  forest  management, urban 
planning and road design(Lim et al., 2003). For this, the use of 
LiDAR data in generating DEM has become a trend where the 
LiDAR generated DEM can be used for variety of applications 
(Liu, 2008). 
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1.2 Slope 

A slope is a change of elevation due to the change in horizontal 
position (Jones, 1998). Slope is regularly used to describe the 
steepness of the ground's surface where it can be measured as 
the rise (the increase in elevation in some unit of measure) over 
the run (the horizontal distance measured in the same unit as the 
rise) (Stump, 2001). GIS can analyze digital elevation data such 
as elevation points, contour lines and DEM and subsequently, 
derive both slope and aspect data sets from these elevation data. 
Later on, the slope and aspect data are used to describe 
landforms, to model surface runoff and to classify soils. 
  
1.3 Interpolation 

Interpolation according to Borrough et. al. (2001) is the 
procedure of predicting the value of attributes at unsampled site 
from measurements made at point locations within the same 
area or region. An interpolation made within a spatial context is 
known as spatial interpolation where it is the process of using 
the point with known values to estimate values at other points 
(Chang and Kang-tsung, 2006). 
 
In general, there are two types of interpolation which are 
geostatistical and deterministic interpolations. Geostatistical 
interpolation is a method of surface creation by predicting the 
values between known values using the statistical approaches 
(Srivastava, 2006). On the other hand, deterministic 
interpolation creates surface based on measured points but does 
not take into account any spatial process occurs within 
(Anderson et al., 2005a). Several types of deterministic 
interpolations are Kriging, Inverse Distance Weighting (IDW), 
Spline and Natural Neighbours. 
 
Kriging was originally developed to estimate the spatial 
concentrations of minerals for the mining industry and now is 
widely used in geography and spatial data analysis (Lee, 2004: 
Tang, 2005). Kriging assumes the distance or direction between 
the sample points that reflect a spatial correlation that can be 
used to explain variation in the surface. Kriging is essentially a 
weighted average technique but its weights depend not only on 
the distances between sample points and estimation locations 
but also on the mutual distances among sample points (Cressie, 
1993; Desmet, 1997; Anderson et al., 2005a). 

 
IDW assumes the closer a sample point is to the prediction 
location, the more it will influence the prediction value. 
According to Myers (1994), the assigned weight of IDW 
depends on the distance between the data location whereas the 
particular location estimation on the relative location between 
the sample data is not considered.  IDW works well for dense 
and evenly distributed sample points (Child, 2004). Like 
Kriging, IDW uses a weighted average where the outside range 
of maximum and minimum sample point value is not estimated. 
Therefore, some important topographical features such as ridges 
and valley cannot be generated unless they have been sampled 
(Lee. 2004) 
 
Finally, Spline interpolation uses a mathematical function that 
minimizes overall surface curvature. According to Johnston  et  
al. (2001), Spline  is an  interpolator  that  fit  a function  to  
sampled  points. Furthermore, this interpolator is able to 
estimate values that are below the minimum or above the 
maximum values within the sample data. This makes Spline 

method effective for predicting ridges and valleys where usually 
sample date is not included (Child, 2004). 

 
 

2. PROBLEM BACKGROUND 

As reported by Su et al. 2006), IDW creates DEM with less 
overall error compared to other methods with an average error 
value of 0.116 m. On the other hand, Kriging and Spline 
methods provided the value of 0.133 m and 0.140 m each. He 
concluded by mentioning the accuracy of DEM varies with the 
changes in terrain and land cover type (Adams and Chandler, 
2002; Hodgson and Bresnahan, 2004; Hodgson et al., 2005; Su 
and Bork, 2006). Similarly, research by Su and Bork (2006) 
stated that IDW is the most accurate interpolator with RMSE of 
0.02 m lower than Spline and Kriging. 
 
In their research, Liu et al. (2009) obtained RMSEs of 0.165 m 
by using Kriging, 0.174 m for IDW and 0.150 m using Local 
Polynomial (LP) on a flat terrain. However, on a complex 
terrain, the results were significantly different where IDW’s 
RMSE was 0.294 m, Kriging’s RMSE was 0.358 m and 0.25 m 
RMSE for Local Polynomial (LP) for site one which is in flat 
terrain. The fact that LP provided better results for the study 
was not significant it is a moderate quick interpolator compared 
to the IDW (Liu et al., 2009). Ideally again, IDW was seen as 
the best interpolation method. 
 
However, research by Clark et al. (2004) provided a different 
result where Kriging gave an RMSE of 2.29 m compared to 
IDW which was 2.47 m. It is important to note that the  research 
was carried out within a tropical rainforest surrounding where a 
mixture of old-growth terra firm, swamp, secondary and 
selectively logged forests, as well as agro-forestry plantations, 
developed areas with buildings and mowed grass, and 
abandoned pastures with large grasses, shrubs and remnant trees 
was the case. 
 
There are many opinions regarding on which interpolation 
method produces the highest accuracy LiDAR DEM. It can be 
seen that IDW and Kriging are the main competitors when it 
comes to producing DEM when comparing RMSEs. To date, 
insufficient number of studies observed this LiDAR DEM 
interpolation accuracy issues for vegetated area. 
 
According to Rasib et al. (2013), the combination of Kriging 
and Adaptive TIN (ATIN) algorithm for filtering method 
provides higher accuracy of DEM with RMSE values of 0.21 m 
for oil palm, 0.25 m for mixed forest and 0.32 m for mangrove. 
However, Razak et al. (2013) mentioned that IDW is still 
preferred as an interpolation technique due to its faster 
computational duration without adding artefacts to the DTM. 
 
In addition to interpolation technique, slope can also affect the 
accuracy of DEM. Study by Salleh (2014) revealed that the 
highest RMSE is from a third class slope ranging from 11° to 
15° with an RMSE value of 0.874 m compared to classes one 
and two slope with values of RMSE at 0.5964 m and 0.7232 m 
each. This study implemented Kriging interpolation technique. 
 
It can be seen that limited number of study which took into 
account the interpolation accuracy issue for LiDAR DEM 
within vegetated area are available. Furthermore, issues such as 
the influence of interpolation method and slope level against 
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LiDAR DEM accuracy are taken for granted within vegetated 
area. Therefore, this study is carried out to address this accuracy 
issue and to test the most suitable interpolation method 
especially for rubber estate and oil palm area. 
 
2.1 Aim and Objectives 

The aim of this study is to identify the accuracy of LiDAR DEM 
for vegetated area using different interpolation methods and 
slope classification. In order to achieve the aim of the study, 
three objectives have been developed: 
 

1. To review selected interpolation methods 
2. To generate DEM according to different interpolation 

methods and at different slope classes  
3. To evaluate the accuracy of DEM using specific criteria 

 
 

3. METHODOLOGY 

3.1 Descriptions of Data and Study Area 

Figure 2 (a) and 3 (b) show the study area for this study while 
Figure 2 (b) and 3 (b) show the raw LiDAR data. The study area 
located at Simpang Pelangai, in district of Bentong, Pahang. 
The areas covered in this study are oil palm (150 m x 100 m) 
and rubber (200 m x 100 m).  
 
The LiDAR data were collected on January 2009 using a 
REIGL laser scanner mounted on a British Nomad aircraft. The 
data were delivered in the classified LAS format of three-
dimensional point cloud. The average LiDAR data sampling 
density across the area is about 2.2 points per m2. 
 

 
(a) 

 
(b) 

Figure 2. (a) Map of study area Simpang Pelangai, Bentong, 
Pahang for rubber area, and (b) raw LiDAR data 

 
(a) 

 
(b) 

Figure 3. (a) Map of study area Simpang Pelangai, Bentong, 
Pahang for oil palm area, and (b) raw LiDAR data 

 
Field survey data is observed using tachymetry technique using 
total station and optical-levelling. In total, there are 132 points 
and 126 points of field survey data collected in rubber and oil 
palm areas, respectively. These points are collected based on the 
local Pahang State Cassini coordinate system, later on 
transformed to the old Malaysia Rectified Skew Orthomorphic 
(MRSO) using a general conversion method in GIS software. 
 
3.2 Research Methodology 

The methodology comprises six phases. The initial phase covers 
the process of literature review where the exact issue of LiDAR 
derived DEM was identified. Next was data acquisition. In this 
phase, LiDAR data that covers two vegetation areas were 
acquired. On top of that, aerial photo and tachymetry data were 
acquired. The third phase of data processing generated LiDAR 
derived DEM and slope map. Later on, phase four involved 
qualitative and quantitative evaluation through validation and 
accuracy assessment. Phase five discusses the results and 
finally, phase six concludes the study by providing some 
recommendations. The whole methodology is shown in Figure 
4. 
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Figure 4. Overall methodology 

 
3.2.1 Ground Filtering of LiDAR data 
 
The purpose of ground filtering is to separate ground and non-
ground data. The entire non-ground points that include 
vegetation and building are removed. Filtering of ground point 
is performed using Adaptive TIN (ATIN) approach that is 
embedded within TerraScan software. Suitable values of 
parameters are necessary in order to obtain a better filter. The 
parameters are: 
 

1. Maximum building size 
2. Iteration angle 
3. Terrain angle 
4. Iteration distance 

 
Table 1 shows the values for each parameter that were used in 
TerraScan software for filtering process. 
 

Parameters Value 
Maximum building size 20 metre 
Maximum terrain angle 20 degree 
Maximum iteration angle 3.5 degree 
Iteration distance 1 metre 
Reduce iteration 1.2 metre 

Table 1. Value for Each Parameter in TerraScan 
 
The maximum building size defines the area that will have at 
least one hit on the ground. On the other hand, the maximum 
terrain angle is the maximum of steepest allowed slope. The 
maximum iteration angle is the maximum angle between points 
while the iteration distance makes sure that the iteration does 
not produce big jump upward when triangles are large. Finally 
the reduce iteration parameter helps to avoid adding 
unnecessary point density to the group model. The optimum 
parameters are selected by examining topographic changes in 
the study area and comparing unfiltered and filtered results as 
an output iteratively. For the rubber area, the raw LiDAR points 
are 32447 and become 2670 after filtered. Meanwhile, for the 
oil palm area, the raw LiDAR points are 30498 and became 
2867 after filtered. Table 2 summarizes the results of raw and 
filtered data for both oil palm and rubber areas.  
 

Area Raw points Filtered points 
Rubber 32447 2670 
Oil palm 30498 2867 

Table 2. Summarization of raw and filtered points for oil palm 
and rubber areas 

3.2.2 DEM Generation Using Different Interpolation 
Methods:  
 
Different interpolation methods result in different accuracy of 
the resultant DEM. Two types of DEM are produced from this 
study based on different data sources. The first DEM is from 
filtered LiDAR data while the second one is from tachymetry 
data. The DEM generated from tachymetry data is used as a 
reference and to produce slope maps. In this study, several 
interpolation techniques based on geostatistical approaches are 
selected due to their familiarity with DEM. The interpolation 
techniques are Kriging, IDW and Spline. The DEM generated 
from the filtered LiDAR data is interpolated using 0.5 m and 1 
m of spatial resolution. Basically, the determination of spatial 
resolution is based on density and space between points (Meng 
et al., 2010). This should be done according to the density of 
ground points after the filtering and the need of the target 
application. For example 1 m spatial resolution can be 
generated with 2 point per m2 ground points. Certainly for 0.5 
m DTM, a higher density of ground points after filteration is 
needed. 
 
Interpolation is carried out using Geostatistical Analyst Tools in 
ArcGIS 10.2 software. Initially, the conversion of the LiDAR 
data from ASCII format to feature class format are carried out 
that precedes the interpolation step. 
 
3.2.3 Slope Classification and Slope Map:  
 
The quality of slope also contributes to the accuracy of the 
produced DEM. Here, the slope was generated from the DEM 
of field survey data. Slope tools in ArcGIS were used to 
produce the slope. Then the slopes are classified manually by 
using select by attribute of the raster value produced by slope. 
Table 3 shows the classification of the slopes 
 

Slope class Slope range (degree) 
1 0 – 5 

6 – 10  
11 – 15  

2 
3 

Table 3. Slope classification based on slope range 
 
3.2.4 Accuracy Assessment of LiDAR Derived DEM:  
 
Corresponding bare-earth elevations are extracted from each 
LiDAR derived DEM at each point to assess the effect of slope 
category and filtering method on DEM error. Several methods 
are proposed for the assessment of the quality of the DEM. 
Mean signed error (MSE) and root mean square error (RMSE) 
are two commonly accepted statistical measurements used to 
assess DEM accuracy. Several studies used RMSE values based 
on high-grade in situ surveyed elevations to determine the 
accuracy of DEM across varying land cover and topography 
(Hodgson and Bresnahan, 2004; Bater and Coops, 2009; Spaete 
et al., 2011). Hodgson and Bresnahan (2004) and Su and Bork 
(2006) embedded MSE in to identify the tendency for under or 
over estimation of elevations relative to specific treatment 
classes. 
 
In this study, RMSE is chosen for estimating the errors using 
the Formula 1: 
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n 2
(Z Z )DEM REFi 1

RMSE
n

∑ −
=

=               (1) 

 
where ZDEM = elevation derived from the LiDAR points 
 ZREF = elevation derived from tachymetry data 
 n = total number of points 
 
Geostatistical Analyst Tool was again used to compare the 
results of LiDAR derived DEM against the tachymetry data 
derived DEM. The prediction of elevation from LiDAR derived 
DEM is automatically generated in an attribute table with the 
resultant error. Figure 5 shows the error generated from LiDAR 
derived DEM. The calculation of RMSEs was later on done 
using Microsoft Excel software. 
 

 
Figure 5. Error generated from LiDAR derived DEM. Elevation 

values are from the reference data while predicted values are 
elevation from LiDAR derived DEM  

 
 

4. RESULTS AND DISCUSSION 

4.1 Generated DEM 

Two types of DEM are produced from this study. They are 
DEM from tachymetry data and DEM from LiDAR points. 
 
4.1.1 DEM from Tachymetry Data: There are two sets of 
tachymetry data; oil palm and rubber. Both tachymetry data are 
interpolated using Kriging technique for slope map creation. 
Figure 6 shows the results of DEM created from both 
tachymetry data. 
 

 
(a) 

 
(b) 

Figure 6. DEM generated from tachymetry data for: (a) rubber 
area, (b) oil palm area 

 
Kriging technique is solely used for generating the DEM from 
tachymetry data due to its performance. This technique 
performs better when compared to the other interpolation 
techniques in most contexts (Arun, 2013). In addition, Kriging 
produced better estimations of elevation especially when 
sampling points become sparse (Lloyd and Atkinson, 2006). 
 
4.1.2 LiDAR Derived DEM for the Rubber Area:  
 
Two spatial resolutions of 0.5 m and 1.0 m are tested using 
three interpolation techniques. Figure 7 shows the LiDAR 
derived DEM using three interpolation methods with spatial 
resolution of 0.5 m and 1 m for the rubber area. 
 
Based on Figure 7, Kriging produced the smoothest surface 
compared to IDW and Spline techniques. Spline technique 
generates corrugated surface compared to IDW for both 0.5 m 
and 1 m of spatial resolutions. It is also obvious that the highest 
elevation is from Spline interpolator at 85.5262 m. 
 
4.1.3 LiDAR Derived DEM for the Oil Palm Area:  
 
Similarly, two spatial resolutions of 0.5 m and 1 m are used for 
generating DEM of the oil palm area On top of that, three 
interpolation techniques are again tested which are Kriging, 
IDW and Spline. Figure 8 depicts the results of LiDAR derived 
DEM for 0.5 m and 1.0 m spatial resolutions for oil palm area. 
 
4.2 Slope Map of Tachymetry Data 

Slope is also one of the factors that need to be considered. 
Slope map was created from the DEM of tachymetry. Figure 9 
show the slope map of both oil palm and rubber area. Based on 
Figure 8, Spline interpolator provides DEM with more 
corrugated surface, coarser tones and coarser texture compared 
to the DEM from IDW and Kriging interpolators. For Kriging 
and IDW techniques, there is no difference in the DEMs 
produced for both spatial resolutions. However, for Spline, it 
can be seen that there is a slight difference for both 
 
4.3 Accuracy Assessments 

The errors are computed based on interpolation methods and 
slope classes.  The results are shown in subsequent tables and 
graphs. In this section, there are overall RMSE and RMSE 
based on slope classes. 
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spatial resolutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. DEM generated for spatial resolutions of 0.5 m and 1 m for rubber area using Kriging, IDW and Spline interpolator 

 

Figure 8. DEM generated for spatial resolutions of 0.5 m and 1 m for oil palm area using Kriging, IDW and Spline interpolator 
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(a) 

 
(b) 

Figure 9. Slope map generated from DEM of (a) rubber area, (b) 
oil palm area 

 
4.3.1 Overall Error Based on Interpolation Methods:  
 
Table 4 shows the values of RMSE for the DEM of the rubber 
area and Figure 10 highlights the graph of the overall RMSE for 
the similar area. Similarly, Table 5 shows the values of RMSE 
for the DEM of the oil palm area and Figure 11 highlights the 
graph of the overall RMSE for the similar area. 
 

Resolution (m) Methods RMSE (m) 
0.5 Kriging 0.7895 

IDW 1.06139 
Spine 0.7463 

1 Kriging 0.7895 
IDW 1.0614 

Spline 0.76 
      Table 4. The overall RMSE values of the rubber area 

 

 
(a) 

 

 
(b) 

Figure 10. Graphs of (a) the overall RMSE for 0.5 m spatial 
resolution and, (b) the overall RMSE for 1.0 m spatial 

resolution for the rubber area 
 

Resolution (m) Methods RMSE (m) 
0.5 Kriging 0.7266 

IDW 0.7843 
Spine 0.7338 

1 Kriging 0.72662 
IDW 0.7843 

Spline 0.7475 
Table 5. The overall RMSE values of the oil palm area 

 

 
(a) 

 
(b) 

Figure 11. Graphs of (a) the overall RMSE for 0.5 m spatial 
resolution and, (b) the overall RMSE for 1.0 m spatial 

resolution for the oil palm area 
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4.3.2 Error Based on Slope Class:  
 
The discussion of this section is for two distinctive spatial 
resolutions, 0.5 m and 1.0 m, both for oil palm and rubber 
areas. For both spatial resolutions, three interpolations are 
tested. The calculation of RMSE based on slope class was done 
manually by classifying the raster value according to the slope 
range as mentioned in Table 3. 

4.3.2.1   Rubber Area: The result of RMSE based on three 
interpolation methods and slope classes for both spatial 
resolutions of 0.5 m and 1 m is shown in Table 6 and Figure 12. 
 

Spatial 
Resolution (m) 

Slope 
Range (°) 

Slope 
Class 

Method RMSE 

0.5 1 - 5 1 Kriging 0.626 
   IDW 0.68 
   Spline 0.801 
 6 - 10 2 Kriging 0.787 
   IDW 1.118 
   Spline 0.729 
 11- 15 3 Kriging 0.853 
   IDW 0.911 
   Spline 0.8 
1 1 - 5 1 Kriging 0.655 
   IDW 0.694 
   Spline 0.76 
 6 - 10 2 Kriging 0.75 
   IDW 1.026 
   Spline 0.741 
 11- 15 3 Kriging 0.961 
   IDW 1.268 
   Spline 0.83 
Table 6. RMSE according to slope classes of 0.5 m and 1m 

spatial resolutions for rubber area 
 

 
(a) 

 

 
(b) 

Figure 12. Graphs of RMSE versus slope class for spatial 
resolution of 0.5m and 1.0 m for rubber area 

 

4.3.2.2   Oil Palm Area: Table 7 and Figure 13 show the result 
of RMSE based on three interpolation methods and slope 
classes for both, 0.5 m and 1.0 m spatial resolutions. 
 

Spatial 
Resolution (m) 

Slope 
Range (°) 

Slope 
Class 

Method RMSE 

0.5 1 - 5 1 Kriging 0.542 
   IDW 0.544 
   Spline 0.533 
 6 -10 2 Kriging 0.603 
   IDW 0.545 
   Spline 0.64 
 11- 15 3 Kriging 1.49 
   IDW 1.785 
   Spline 1.491 
1 1 - 5 1 Kriging 0.546 
   IDW 0.548 
   Spline 0.542 
 6 -10 2 Kriging 0.772 
   IDW 0.787 
   Spline 0.769 
 11- 15 3 Kriging 1.266 
   IDW 1.554 
   Spline 1.402 
Table 7. RMSE according to slope classes of 0.5 m and 1m 

spatial resolutions for oil palm area 
 

From previous tables and figures within this section, it can be 
seen that different spatial interpolation methods have 
distinctive effects to the LiDAR derived DEM output. In 
general, Kriging provides the highest accuracy when 
compared against IDW and Spline for both study areas. This 
is due to the ability of Kriging where it examines specific 
sample points to obtain a value for spatial autocorrelation that  
 

 
(a) 

 

 
(b) 

Figure 13. Graphs of RMSE versus slope class for spatial 
resolution of 0.5m and 1.0 m for oil pam area 
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is only used for estimating surrounding points rather than 
assigning a universal distance power value. Furthermore,  
Kriging  allows  for interpolated  cells  to  exceed  the  
boundaries  of  the  sample  range (David et al. ,2005).  
 
In relation to slope class, it can be seen that slope class 11° - 
15° give the lowest accuracy for both study areas and spatial 
resolutions. Accuracy assessment using spatial resolution 
indicates that, the lower the spatial resolution is, the higher 
accuracy can be achieved. This is similar with Spaete et al., 
(2010) where he indicates that RMSE for slope greater than 10 
degree provides greater values compared to slope class less than 
ten degree. 
 
 

5. CONCLUSION 

Both, interpolation method and slope class have effects towards 
the accuracy of DEM derived from LiDAR. From this study, 
IDW method give the lowest accuracy to the DEM while 
Kriging method can provide high accuracy of DEM produced in 
both areas. However, spline interpolator give the lowest value 
of RMSE for rubber area.  For class slope, class slope 1 which 
are in the range of 1 – 5 degree give lowest accuracy for both 
area using different methods. 
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