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ABSTRACT: 

 

3D tree database provides essential information of tree species abundance, spatial distribution and tree height for forest mapping, 

sustainable urban planning and 3D city modelling. Fusion of passive optical satellite imagery and active Lidar data can potentially be 

exploited for operational forest inventory. However, such fusion requires very high geometric accuracy for both data sets. This paper 

proposes an approach for 3D tree information extracted from passive and active data integrating into existing tree database by 

effectively using geometric information of satellite camera model and laser scanner scanning geometry. The paper also presents the 

individual methods for tree crown identification and delineation from satellite images and lidar point cloud data respectively, the 

geometric correction of tree position from tree top to tree base. The ground truth accuracy assessment for the tree extracted is also 

present. 

 

 

1. INTRODUCTION 

3D tree database provides essential information of tree species 

abundance, spatial distribution and tree height for forest 

mapping, sustainable urban planning and 3D city modelling. Tree 

database with important stand level attributes, such as tree 

location, species, diameter at breast height (DBH), tree height, 

and crown size can be integrated from multiple data sources such 

as field surveys, aerial imagery, passive and active remotely 

sensed data. With the improvements of spectral and spatial 

resolution in optical sensor technology, expensive and time-

consuming field surveys could be partially replaced by 

multispectral high-resolution imagery acquired by remote 

sensing satellites (Kamal et al. 2015, Kubo et al. 2005). 

Individual tree crowns can be delineated from high resolution 

satellite imagery (Song et al. 2010). Some structural parameters 

such as crown size, crown closure, and canopy structure can also 

be extracted. Tree growth can be evaluate over time. Spectral 

indices may also give information of tree health conditions. 

Besides optical satellite imagery, laser scanning and light 

detection and ranging (Lidar) technology (Zhen et al. 2016, 

Næsset 2007) has been broadly applied and has contributed to the 

efficiency of local-scale inventories. Airborne laser scanner 

(ALS) data (Koch 2006) provide high density 3D point clouds at 

high spatial resolution and vertical accuracies, enabling 

extraction of canopy height, above ground biomass estimation 

and individual species identification based on structural 

attributes. 

 

While Lidar provides tree structural information, spectral data 

from satellite sensors provide information related to plant 

physiology and chemistry. The reflectance at various spectral 

bands and spectral indices constructed from these bands can 

potentially be used for monitoring tree stress and health 

conditions. The spectral attributes, together with structural 

information may aid in species differentiation and identification. 

Fusion of passive optical satellite imagery and active Lidar data 

can potentially be exploited for operational forest inventory. 

However, such fusion requires very high geometric accuracy for 

both data sets. Depending on the satellite viewing geometry, the 
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disparity between the tree top and the tree base of a tree on the 

satellite image varies according to the tree height. Thus, tree 

crowns in the georeferenced orthorectified image are displaced 

from their true geolocation. Due to its vertical scanning 

geometry, ALS data provide true locations of trees. Since 

different trees have different heights, it is a challenge to match 

tree crowns delineated in satellite imagery to the corresponding 

tree crowns extracted from ALS. 

 

In this paper, we present In this paper, we present the 

methodology for automated individual tree crown extraction and 

delineation from high resolution satellite imagery and from ALS 

data, respectively; 3D geometry processing approach for 

geolocating tree crowns delineated from satellite imagery using 

combined information of satellite camera model and canopy 

height model (CHM) derived from ALS data; the integration of 

tree attributes from both sensors into a tree database; and the 

ground truth accuracy assessment of the results.  

 

 

2. DATA SOURCES AND PREPROCESSING 

The test site of this study is located at Ang Mo Kio town in 

Singapore, consisting of mixed forest, park, roadside trees and 

residential areas. 

 

2.1 CHM data processing 

ALS data of the area were collected at vertical and planimetric 

accuracy of 0.15 m or better with a density of at least 5 points per 

square meter. Raster images of CHM with 0.5 m per pixel 

resolution were derived from ALS data using a commercial off 

the shelf software. Small gaps within tree crowns in the CHM 

image are filled with neighbouring pixel values. The buildings 

and roads are cleaned according to the spatial characteristics.  

 

2.2 Satellite imagery processing 

High spatial resolution satellite images of the test site were 

collected by the WorldView-2 (WV2) satellite within several 
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days from the acquisition period of the ALS data. The WV2 

satellite images have 8 multispectral bands with 2 m per pixel 

resolution and a panchromatic band with 0.5 m resolution. The 8 

spectral bands enable accurate classification of the different land 

cover types present at the test site. Besides individual spectral 

bands, several mathematical combinations of different spectral 

bands and a variety of spectral indices are also useful for the 

study of vegetation biophysical parameters. The Normalized 

Difference Vegetation Index (NDVI) constructed from the 

reflectance at the red and near-infrared (NIR) bands (Tucker 

1979) has often been used for canopy mapping. Differentiation 

of bare land, grass, and bush from trees can be enhanced by other 

indices, such as the NIR to red band ratio as well as the ratio of 

the reflectance at the red-edge and red bands.  

 

For better spectral analysis and comparisons of images acquired 

at different time period or by different sensors, the digital 

numbers of WV2 images should be converted to spectral 

reflectance values.  The digital number is first converted to the 

top-of-atmosphere (TOA) spectral radiance (Todd et al. 2010) 

according to Eq. 1, 

 

𝐿𝑖 = 𝐾𝑖𝑄𝑖/∆𝜆𝑖                                                             (1) 

 

where the subscript i denotes the band number, 𝐿𝑖 is the TOA 

band-average spectral radiance, 𝐾𝑖 is the absolute radiometric 

calibration factor, 𝑄𝑖 is the pixel digital number, and ∆𝜆𝑖 is the 

effective bandwidth. The radiance is then converted to TOA 

spectral reflectance 𝜌𝑖 by assuming a Lambertian reflecting 

target, 

 

𝜌𝑖 =
𝜋𝐿𝑖𝑑

2

𝐸𝑖  cos 𝜃𝑠
                                                 (2) 

 
where 𝐸𝑖 is the band-averaged solar spectral irradiance for a 

given band, d is a correction factor for the different earth-sun 

distance at different days of the year and 𝜃𝑠 is the solar zenith 

angle. Atmospheric correction is performed on the TOA 

reflectance by correcting for Rayleigh scattering and gaseous 

absorption. 

 

Pan-sharpened images with resolution of 0.5 m/pixel for spectral 

reflectance of each band are produced using an in-house 

developed pan-sharpening algorithm that preserves both spectral 

fidelity of the multispectral bands and spatial resolution of the 

panchromatic band.  

 

2.3 Existing tree database 

The existing tree database with semantics of species, location, 

DBH, tree height and biomass was compiled by the National 

Parks Board from ground survey data. The database currently 

stores approximately 500,000 trees in parks and along the roads. 

The database is used for integration and also for accuracy 

assessment for the trees extracted. 

 

 

3. METHODOLOGY 

The CHM images are grey level raster images representing tree 

height while the WV2 satellite have 8 multispectral bands 

representing signal strength. Thus, different algorithms are used 

for extracting tree crowns from these data.  

 

3.1 Tree crowns delineating from CHM 

The CHM layer was segmented using an object-based 

multiresolution segmentation approach according to height 

homogeneity and local likelihood. Non-vegetation areas were 

removed according to the standard deviation of CHM and the 

shape (deviation from roundness of tree crowns) of the objects. 

Individual tree crowns were delineated using a watershed 

segmentation method (Beucher 1994) and the local maxima. 

Multiple thresholds were applied to watershed for overflow 

according to area, roundness, mean of CHM, standard deviation 

of CHM, etc. The tree crowns were smoothed by applying 

morphology filters together with region growing. Finally the tree 

crowns were reconstructed from CHM with attributes of crown 

size, centre position and height (Fig. 1).  

 

 
Figure 1. Tree crowns extraction and delineation from CHM 

 

3.2 Tree crowns delineating from satellite imagery 

The satellite imagery of WorldView-2 was first orthorectified 

using a fine digital elevation model. The pixel digital numbers 

were then converted to spectral reflectance. The multispectral 

and panchromatic bands were fused to form pan-sharpened 

images. The normalized difference vegetation index (NDVI) as 

well as several other spectral indices were computed.  

 

An object-based multiresolution segmentation approach was 

used to roughly eliminate non-tree areas first, then the tree class 

was extracted precisely with the aid of a few spectral indices. The 

individual tree crowns were delineated from the identified tree 

class using watershed segmentation. The tree crowns were then 

smoothed by morphological filtering and region growing.  

Finally the spherical tree crowns were reconstructed. 

 

3.2.1 Spectral indices generation from satellite imagery: 

Spectral indices of ndvi, grvi (green-red vegetation index), ratio 

of red edge and ndvi (ratio_re_ndvi), ratio of nir and red 

(ratio_nir_red), average intensity of nir, red, green and blue (br4) 

and average intensity of red, green and blue (br3) for the satellite 

imagery were generated from the reflectance as in Eq. 4,  
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𝑛𝑑𝑣𝑖 =  
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
                                                         (4) 

 

𝑔𝑟𝑣𝑖 =  
𝜌𝑔𝑟𝑛 − 𝜌𝑟𝑒𝑑

𝜌𝑔𝑟𝑛 + 𝜌𝑟𝑒𝑑
 

 

𝑟𝑎𝑡𝑖𝑜_𝑛𝑖𝑟_𝑟𝑒𝑑 =  
𝜌𝑛𝑖𝑟
𝜌𝑟𝑒𝑑

 

 

𝑟𝑎𝑡𝑖𝑜_𝑟𝑒_𝑛𝑑𝑣𝑖 =  
𝜌𝑟𝑒
𝑛𝑑𝑣𝑖

 

 

𝑏𝑟3 = (𝜌𝑟𝑒𝑑 + 𝜌𝑔𝑟𝑛 + 𝜌𝑏𝑙𝑢)/3 

 

𝑏𝑟4 = (𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑 + 𝜌𝑔𝑟𝑛 + 𝜌𝑏𝑙𝑢)/4 

 

3.2.2 Tree segmentation and classification: An object-based 

multi-resolution segmentation was applied to divide image layers 

of interests to relatively homogenous objects based on spectral 

and spatial/contextual properties. The neighbouring fragmented 

objects were then merged if the difference of their mean image 

layer reflectance values was small. The objects were classified 

into a set of classes such as cloud, building, shadow, agriculture, 

shrub, tree, bare land, water, etc., according to the mean image 

layer reflectance values and the indices such as ndvi, 

ratio_nir_red, br3, etc.  

 

Tree class normally has high ndvi and low reflectance of blue. 

Compared to trees, bare land has higher ratio_re_ndvi and br4; 

buildup area has higher yellow, nir2, and lower value of 

ratio_nir_red, ndvi; grass has higher value of yellow and br3; and 

shadow has lower value in any indices. In practice, a relatively 

higher threshold for ndvi and a lower threshold for blue band are 

set to eliminate only non-tree areas first.  In the rest of the areas, 

the remaining non-tree classes are eliminated gradually by other 

criteria.  

 

3.2.3 Tree delineation: In satellite images, tree crowns 

normally appear as spherical objects with light or dark patches 

between neighbouring trees. The watershed transformation 

(Beucher 1994) is able to separate objects from the background, 

as well as from each other. NDVI is a useful layer in separating 

trees as the tree tops usually have higher ndvi and edges have 

lower ndvi. Moreover, br3, green index and nir layers also 

contribute to the separation of trees by watershed transformation.  

 

A morphology filter with opening and closing operation is 

applied to the individual tree outlines to smoothen the crowns of 

trees and fill small gaps. Region merging, border optimization 

and reshaping are also applied to the delineated tree crowns. 

 

3.3 Integration of tree database 

Tree crowns extracted from CHM and WV2 images cannot be 

integrated into tree database without geometric correction. The 

disparity between the tree top and the tree base of a tree on the 

satellite image varies according to the tree height and depends on 

the satellite viewing geometry. Tree crowns in a georeferenced 

orthorectified image are displaced from their true geolocation. In 

comparison, Lidar scanner used in this project has a much higher 

geometric accuracy. With the vertical scanning geometry, ALS 

data provide true locations of trees with centimetre-accuracy.  

 

The camera model of WV2 satellite is a transformation that 

matches 3D map coordinates with image coordinates. If the 

height of a tree crown in the image is known, the crown can be 

shifted to its correct location above the tree base using the 

satellite camera model. As the crown height is yet unknown in 

the WV2 image, but every tree crown in the CHM image already 

has the height attribute, we instead transform the tree crowns of 

CHM from their base positions to their respective crown top 

positions on the orthorectified satellite image using the satellite 

camera model.  

 

3.3.1 Worldview-2 camera model: A simplified reverse 

camera model of WV2 is expressed in terms of a set of Rational 

polynomial coefficients (RPC). The RPC model expresses the 

normalized column and row values in an image, (𝑐,𝑟) as a ratio 

of polynomials of the normalized geodetic latitude, longitude, 

and height (𝑝, 𝑙, ℎ).  Normalized values are used instead of actual 

values in order to minimize numerical errors in the calculation.  

The scales and offset of each parameter are selected so that all 

normalized values fall in the range [-1, 1]. Each polynomial is up 

to third order in (𝑝, 𝑙, ℎ) having as many as 20 terms. The rational 

functions are 

 

𝑟 =
∑ 𝑙𝑖𝑛𝑒_𝑛𝑢𝑚_𝑐𝑜𝑒𝑓𝑖∙𝜌𝑖(𝑝,𝑙,ℎ)
20
𝑖=0

∑ 𝑙𝑖𝑛𝑒_𝑑𝑒𝑛_𝑐𝑜𝑒𝑓𝑖∙𝜌𝑖(𝑝,𝑙,ℎ)
20
𝑖=0

              (5)             

 

𝑐 =
∑ 𝑠𝑎𝑚𝑝_𝑛𝑢𝑚_𝑐𝑜𝑒𝑓𝑖 ∙ 𝜌𝑖(𝑝, 𝑙, ℎ)
20
𝑖=0

∑ 𝑠𝑎𝑚𝑝_𝑑𝑒𝑛_𝑐𝑜𝑒𝑓𝑖 ∙ 𝜌𝑖(𝑝, 𝑙, ℎ)
20
𝑖=0

 

 

where 𝑙𝑖𝑛𝑒_𝑛𝑢𝑚_𝑐𝑜𝑒𝑓, 𝑙𝑖𝑛𝑒_𝑑𝑒𝑛_𝑐𝑜𝑒𝑓, 𝑠𝑎𝑚𝑝_𝑛𝑢𝑚_𝑐𝑜𝑒𝑓 and 

𝑠𝑎𝑚𝑝_𝑑𝑒𝑛_𝑐𝑜𝑒𝑓 are 20-term vectors of coefficients that are 

given in a metadata file that comes together with WV2 products.  

 

For a straight vertical tree with ground geolocation(𝑃, 𝐿, 𝐻𝑏), and 

tree height of Δh, the corresponding crown top is (𝑐𝑡 , 𝑟𝑡), and 

base is (𝑐𝑏 , 𝑟𝑏) in a satellite image. These coordinates are related 

by the RPC camera model, 

 

(𝑃, 𝐿, 𝐻𝑏)
𝑅𝑃𝐶
→  (𝑐𝑏 , 𝑟𝑏)                                        (6) 

 

(𝑃, 𝐿, 𝐻𝑏 + 𝛥ℎ)
𝑅𝑃𝐶
→  (𝑐𝑡 , 𝑟𝑡) 

 

Thus, if the height of a tree is known, its crown can be shifted to 

its correct location (𝐿′, 𝑃′) using the satellite camera model.  

 

3.3.2 Integration of crowns of CHM and WV: As the crown 

height is yet unknown in the WV2 image, but every tree crown 

in the CHM image already has the height attribute, we instead 

transform the tree crowns of CHM from their base positions to 

their respective crown top positions on the orthorectified image. 

The transformed crown tops of CHM should match the crown 

delineated in WV2 images. As the outlines of tree crowns 

delineated from WV2 and CHM images are not always the same, 

matching criteria are required.  

 

 
Figure 2. (a) Crown of CHM and WV matches well with common 

area (in magenta) > 80% ; (b) Crown of CHM and WV not well-

matched; (c) multiple crowns of CHM match one crown of WV. 

 

The crowns from WV2 and CHM are considered to be well 

matched and thus belonging to the same tree if the overlapping 

area is at least 80% of either crown area (Fig. 2a). The WV2 tree 

crown then takes the height of the matching CHM crown. In the 

case where two crowns not well matched, WV2 tree crown takes 

the height (fig. 2b) or the weighted heights (fig. 2c) of CHM 
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according to the extent of the common area. With the derived 

crown heights, the tree crowns in the WV2 image are transformed 

back to their respective true geolocation using the satellite 

camera model. Finally, the tree attributes extracted from both 

CHM and WV2 data are integrated into the existing tree database. 

The tree database is expanded by integrating trees extracted from 

CHM and WV2 but not present in the existing database.  

 

 

4. RESULTS 

An example of tree crowns delineation from CHM data using the 

method described in section 3.1 is shown in Figure 3 with 

outlines of crowns in light green. An example of tree crowns 

delineation from a WV2 satellite image using the method of 

section 3.2 is shown in Figure 4 with the outlines of crowns in 

red. The tree crowns extracted from CHM and satellite images 

overlaid together before geometric correction are shown in 

Figure 5. This figure demonstrates the height-dependent 

disparities between the crowns from the two data sources (red for 

WV and light green for CHM).  Figure 6 shows the geometrically 

transformed tree crowns of CHM in the orthorectified satellite 

image. The crowns from the two data sources are very well-

matched. Finally, the locations of tree base in WV2 images can 

be derived using the camera model. The crowns from both CHM 

and WV2 images with attributes of tree centre, tree size, 

diameter, height can be integrated into the existing tree database 

to enhance the attributes included in the database. 

 

Table 1. Accuracy assessment of tree extraction from WV2 

satellite imagery 

Actual trees  815 

Detected trees 844 

Falsely detected trees 51 

Undetected trees 22 

Omission error 3 % 

Commission error 6 % 

Producer’s accuracy 97 % 

User’s accuracy 94 % 

 

Accuracy assessments is done by visual inspection for the crowns 

extracted from satellite image. In the validation area (Table 1), 

there are 844 detected trees. Among them, 51 trees are falsely 

detected while 22 trees are undetected.  Overall, the omission 

error (ratio of number of undetected trees and actual trees) is 3%, 

the commission error (ratio of number of falsely detected trees 

and total detected trees) is 6%. Hence, the producer’s accuracy is 

97% and the user’s accuracy is 94%. The objects which are 

falsely detected as trees are mostly small objects less than 100 m2 

in area or grass patches. The accuracy could be improved by 

improving the classification of grass from trees.   

 

Accuracy assessment has also been done for the extracted crowns 

from CHM by comparison with the tree database (Figure 7). In 

the same validation area, there are 866 tree crowns extracted from 

CHM and only 182 trees are in the tree database. The discrepancy 

is due to the incomplete coverage of the tree database. The 

number of extracted trees is comparable to that extracted from 

the WV2 image. Among the trees recorded in the database, 174 

trees are detected in CHM and 8 trees are undetected giving a 

producer’s accuracy of 96%.  

  

 

5. CONCLUSIONS 

The automated methodology of individual tree crown detection 

and delineation from CHM and Worldview-2 imagery using an 

object-based multiresolution, hierarchical-level approach with 

watershed transformation is presented in this paper. Using the 

satellite camera model, tree crowns from CHM are geometric 

transformed to the orthorectified satellite image to match the 

crowns extracted from the image. Thus, the height of tree crowns 

in the satellite image can be assigned using the known heights 

from CHM. With the derived height, the base location for crowns 

in the satellite image can be derived using the satellite camera 

model. The results from the test site show that tree crowns from 

CHM can be made to match those from WV2 images after 

applying the geometric transformation. Accuracy assessment for 

extracted tree crowns is performed with ground truth data and 

visual examination. An overall accuracy around 96% is achieved. 

The geometric, structural and spectral attributes of tree crowns 

from both CHM and satellite data can be integrated into the 

existing tree database by updating the existing records or 

expanding new ones.  
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Figure 3. Crowns (in light green) extracted from CHM (height in grey, the brighter the higher). 

 

 

 
Figure 4. Crowns extracted from WV2 satellite image with outlines in red. 
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Figure 5. Crowns extracted from CHM (in light green) overlaid with crowns extracted from WV2 image (in red). 

 

 

 
Figure 6. Crowns extracted from CHM (in yellow) geometrically transformed to the orthorectified WV2 image and overlaid with 

crowns extracted from WV2 image (in red). 
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Figure 7. Crowns extracted from CHM (in light blue) overlaid with centres of trees (in red) from database. 
 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W10, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W10-105-2018 | © Authors 2018. CC BY 4.0 License.

 
111




