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ABSTRACT: 
 
In this paper a method of detecting buildings in dense populated city areas using a three-dimensional model, produced by aerial 
images, is described. Further to the detection of the outline of the building, we exact information about the buildings height. The 
study area is the wider centre of Athens, Greece. Our aim is to exact 3D information for large area, in minimum time and minimum 
cost, in order to support opensource data bases, such as openstreetmap.org. The proposed methodology consists of three main stages. 
In the first part of the procedure, aerial images are used to produce a point cloud, using the Semi-Global dense matching algorithm. 
Following, we classify the objects in the point cloud by remote sensing and photogrammetric methods. The classification’s results 
are divided in three main classes: ground, vegetation and buildings. Having detected the buildings and their complexes we attempt to 
find the outlines of each separate building, depending on its level; different levels are considered as different buildings. After 
detecting individual buildings in the point cloud, a polygon is created around their outline. All polygons were compared to the 
building polygons available on openstreetmap.org, in order to evaluate the results. The number of levels of 100 buildings, in 
different parts of the city, was measured manually in order to evaluate the Z-dimension’s results, and openstreetmap.org was updated 
with that information. Further update and combination of the database created in the current process, with the one available on 
openstreetmap.org is yet under study.     
 
 
 

1. INTRODUCTION 

Building detection and description is a task with various 
applications in the fields of GIS, topography, cartography and 
urban planning. More often, buildings are mapped using 
polygons describing their outline. Depending on the initial data 
and the procedure, different approaches have been taken in 
automatically mapping buildings, using aerial or satellite 
images. Muller and Zaum (2005) propose a single-image 
building detection, based on RGB aerial images. During the 
pre-processing, the image is transformed to HIS, and following, 
using image segmentation all regions are detected. In the post 
processing step regions fulfilling special conditions are merged.  
In a different approach, Liu and Prinet (2005) use a probability 
model in satellite images. They detect the buildings assuming 
their space distribution is represented by a logistic function. 
Each building is detected as an independent object in a single 
image, based on its similarity to proposed features. Using also 
single-image data, Nevatia and Ramakant, (1998) detect 
building polygons based on the linear edges of their rooftops. 
Combining the verified results with information taken from the 
buildings’ shadows in the image, they reach conclusions 
concerning all three dimensions of the building. More recently, 
edge detection and Haar features were used in developing a 
scale and rotation invariant method that detects building in low 
quality images (Cohen et al., 2016). 
  
Other initial data used often are LIDAR- sensor data, by 
creating dense point clouds and detecting planes (Rottensteiner, 
2003; Rottensteiner et al., 2007). Point clouds from LIDAR 
sensors, in contrast with dense cloud created by 
photogrammetric methods, contain fewer outliers, forming more 
easily detected geometrical shapes. Remote sensing methods 
have been applied in an attempt of classifying objects in urban 
areas, both in satellite (Zhang, 1999) and aerial images, 

combined with spatial data. The combination is required due to 
the non- uniformity of buildings usually existing in urban areas. 
Satellite images containing multispectral information, combined 
with deep learning algorithms have been used to determine a 
binary classification method- “building” or “not building” 
(Vakalopoulou et al., 2015). Ground truth datasets were initially 
used to train the algorithm, which was then applied on modified 
and corrected satellite images.  
 
Detecting a single building in an image is a very complexity 
task (Kiran, 2015). Depending on the city’s architecture, each 
building could consist of a single parallelepiped and its roof in 
the simplest case, or, in the most complicated version of the 
problem, many buildings create a complex, having no spaces 
between them. Moreover, a single building might have more 
than one different levels (e.g., penthouses) or objects on the 
rooftop that affect both its outline and its estimated height. 
Finally, a very common issue, especially in Mediterranean 
architecture, is the balconies that can be detected as parts of the 
building in many different levels, altering the results of the 
description. 
 
Athens is a city where all of the above forms of buildings can be 
found within a few meters from each other. In areas around 
main highways, buildings are high and bulky, having terraces 
and fewer balconies. On the other hand, in older parts of the 
city centre, buildings are up to two floors, they usually have 
rooftops, balconies and many different parts. Furthermore, in 
most parts of the city’s centre, buildings are located right next 
to each other, making it even more difficult to demarcate them. 
In the current project a combination of remote-sensing 
classification methods, along with geometrical characteristics 
and GIS techniques are used in order to locate individual 
buildings, map their outline and calculate the number of levels 
each building consists of. 
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2. PROPOSED METHODOLOGY 

The methodology developed in this project aims in detecting 
buildings in dense populated areas of large cities. The initial 
data required for the process are at least two overlapping aerial 
images with known interior and exterior orientation. Images 
with known relative orientation require extra information of 
three ground control points visible in both images. In Figure 1 a 
flowchart is presented, depicting the main stages of the 
procedure, which are further described in the following 
sections. 

 
Figure 1: Main stages of the process 

 
2.1 Dense matching 

The minimum data required for the process is a stereopair of 
images. More than two overlapping images can provide even 
better results, decreasing non-visible areas in the point cloud, as 
long as the geometry of the block is appropriate. The overlap 
between the images has to be arranged depending on the flight 
height and the focal length. Each image used in the current 
process contained information about the radiance value in four 
bands: red, green blue and infrared band. The infrared band is 
of great importance in the stages of classifying the objects and 
detecting vegetation. Exterior and interior orientation were 
calculated for all images. 
 
By applying the semi-global dense matching algorithm (Haala, 
2013; Ernst and Hirschmüller, 2008; Dall’Asta and Roncella, 
2014), combined with the above information, a dense point 
cloud is created for each separate stereopair. All four bands’ 
values are stored in the created point cloud, along with the 
position for each point’s position (X, Y, Z) in a fixed reference 
system. The semi global algorithm is applied on two images, 
therefore in large areas covered by more than one stereopairs, 
multiple overlaying point clouds are created.   
 
Following, the overlaying point clouds are merged into a single 
cloud. A downsampling method is applied at the overlapping 

areas, in order to eliminate redundant points. In occasion, the 
same ground point is visible in more than two images, and, 
therefore, in more than one point cloud. Duplicate recordings 
lead to overloading datasets and represent the same ground 
point in slightly different colours and positions in each cloud. 
As a result, it was a necessity to calculate a unique value for the 
position and the radiance of the points. Using a downsampling 
function, the average position and radiance value for each point 
is calculated within a certain area (grid box). Considering the 
ground pixel size of the cloud, the grid box is selected at a 
slightly smaller size, to maintain the initial spatial resolution of 
the cloud. The current application aims on extracting 
information using the minimum possible data required. In cases 
where multiple image coverage is possible, the redundancy of 
images and, therefore, points can be used to obtain further 
information and instead of Semi-global techniques other 
algorithms may be applied, such as Structure from Motion 
technique.  
 
The results of the semi global algorithm are affected by a 
number of factors during the process. Commonly, due to the 
geometry of the central projection, certain ground points might 
be visible in only one of the two images of the stereopair. 
Furthermore, correspondences in the two images are not always 
well estimated. Consequently, the position and the colour of 
some points in the point cloud do not match their true value, as 
expected. When visualizing the point cloud, these outliers are 
detected, since they appear to be far away from the main 
landscape. Removing these outliers requires the calculation of 
the clustering of the points into space (Vosselman and Dijkman, 
2001). By counting the number of points within a certain sphere 
around each point, the algorithm determines whether a point is 
an outlier or an inlier. The minimum required number of points 
differs in each application, depending on the density of the 
cloud, and so does the range of search. The thresholds chosen 
may affect the result; strict limits lead to very slow performance 
and to elimination of points that are actually inliers, whereas 
high tolerance does not remove efficiently the outliers.  By 
comparing the number of points in the point cloud before and 
after the removal, we determine a percentage of noise (outliers 
in the cloud) that was detected and removed. Outliers still will 
exist in the point cloud, and since their groups consists of a 
larger number than the threshold chosen, the remaining 
percentage of noise will possibly be even higher than the 
removed. This information will be used in the next stages of the 
procedure.  
 
2.2 Classification 

The second part of the procedure aims in detecting the 
complexes of the buildings in the point cloud. Remote sensing 
methods are particularly effective in detecting objects such as 
vegetation, water and ground, especially when infrared data are 
available. In cases of urban areas, though, the spectral responses 
of different objects may be quite similar.  More specifically, 
ground is mostly covered with constructions such as pavements, 
asphalt roads etc. As a result, the colour values are usually low 
in infrared and medium in all other bands, just like concrete and 
buildings. Except for the vegetation, therefore, all the other 
classes in the cloud are difficult to detect. In order to classify all 
the objects, both remote sensing methods and geometric 
properties of the objects are used. 
 
The main idea of this classification is to detect all the buildings 
by excluding from the cloud all the other categories. The objects 
were divided in four major classes: ground, vegetation, 
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buildings with terraces and buildings with roofs. The classes 
were created based on the different spectral responses of the 
objects or their different place and shape in the cloud. The 
“ground” class contains all the roads and the constructions with 
no elevation from the ground, along with the bare ground 
surface. The “vegetation” class includes all the plants and trees. 
Finally, buildings are divided in two sub-classes, those with 
roofs and those with terraces, due to their different shape and 
colour. 
 
The first step is to detect the ground surface and to create a 
digital terrain model (DTM) of the city. Due to the similarity in 
reflectance with the buildings, in order to model the ground 
surface without using additional data, an algorithm was 
developed based on the geometry of the ground. Precisely, the 
idea was that when creating a point cloud from aerial images, 
ground is the surface with the minimum altitude in the cloud (in 
lack of transparent objects). Based on that idea, in certain areas 
of the cloud we search out for the altitude of the lowest level. 
There are, though, two potential exceptions:  
- At least part of the ground has to be visible in the search 

area; otherwise the lowest level could belong to a building 
or vegetation. 

- The remaining noise in the cloud can set the minimum 
altitude of an area much lower than its true value. 

In order to overcome these exceptions, the algorithm firstly 
divides the entire cloud in parts large enough to contain at least 
a ground surface (e.g., roads). By measuring the side of one 
large block in the cloud, we set the one side of the above parts 
slightly larger, in order to contain at least one part of roads or 
ground. The other side of the area is set at half the size to 
achieve a denser sampling. The segmentation is applied parallel 
to both X and Y direction. Consequently, the created grid 
density is half the size of the measured block.  In each of the 
segmented areas, instead of the lowest altitude, the algorithm 
starts searching bottom to top for the lowest level that does not 
consist of remaining outliers. The condition that ensures this 
hypothesis is that the sum of the points found is larger than the 
previously estimated remaining noise level. Accordingly, any 
object consisted of more than that percentage is less likely to be 
noise. A slightly higher threshold than the estimation provides a 
more solid result.  Starting from the lowest Z in the area, it adds 
up all the points between that minimum Z and a distance 
provided by the user. If the number of the points is less than the 
threshold the algorithm proceeds to a higher level, as shown in 
Figure 2. 
 

 
Figure 2: The algorithm searches, starting from the Zmin and 

for two more iterations, for the lowest level 
 
The distance between each search defines the accuracy of the 
estimation of the surface’s position. At the same time, though, 
the smaller the step, the more iterations take place, and the 
slower the performance is. The user is able to define the search 
step depending on the project’s requirements. When the 

minimum level is found all points with an altitude of 1.50 
meters difference from that level are classified as “ground 
points” and are saved in a different file. Following the detection 
of the ground points, the digital terrain model is created by 
triangulating the new point cloud. Smoothing the produced 
surface is recommended (Figure 3). For each other point of the 
initial cloud, its distance from the DTM is calculated as a scale 
value (Balenović et al., 2016). 
 

 
Figure 3: DTM after triangulation and smoothing 

 
Objects with low elevation from the DTM are removed from the 
cloud. In urban areas several constructions may have been 
recorded in the images and the cloud, such as street lamps, 
kiosks, signs etc. The more detailed the image, the more the 
objects. Since there is no uniformity in these constructions, they 
can not be classified. By deleting all points between a certain 
distance from the ground, all these objects are eliminated from 
the next steps of the procedure. Taking into consideration each 
city’s architecture, a threshold in elevation is determined so that 
minimum loss of useful information (actual buildings) is 
experienced. Points with extremely high (absolute) elevation 
values are also deleted, since they are more likely remaining 
outliers.  
 
In the second part of the classification we calculate the 
Normalized Difference Vegetation Index for each one of the 
points in order to detect and eliminate the vegetation. The index 
is described by the Equation 1. 
 

          (1) 

 
f(i,3) is the value for the red band and 
f(i,4) the infrared band’s value. 
 
Vegetation is recorded with high values in the infrared band, 
with a suddenly reduced record in the next band, the red. The 
normalized ratio between the two bands was used to eliminate 
the vegetation. High values of the NDVI are recorded both for 
vegetation and buildings with roofs.  By sampling in the cloud’s 
values, a minimum threshold is determined for “vegetation” 
class. Usually, a very strict threshold eliminates the major part 
of vegetation along with the roofs, due to both having high 
NDVI values. A second criterion, therefore, of distinguishing 
those buildings is combined with the NDVI in order to avoid 
data loss: roofs appear in red for the RGB 3,2,1 palette, whilst 
vegetation appears in green. A ratio between bands 2 and 3 
should be higher than 1 for one class and lower than 1 for the 
other. Either the ratio 2/3 or the reverse, one of the classes is 
recorded with higher than one (>1) results. In cases where water 
is visible in the cloud (rivers, coasts etc.) a second (minimum) 
threshold is required in the NDVI, since water is recorded with 
significantly low index values.  
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2.3 Creating polygons 

Having completed the classification of objects in the cloud, the 
last stage is to create the polygons around each building and 
create a GIS database for all the buildings. Such a result 
required that each building is located separately from the rest of 
the buildings. After locating unique buildings in the point 
cloud, their boundaries are enclosed with a polygon, while 
storing their scale-information (elevation from the ground) 
calculated in the previous step.  
 
A modification of the algorithm that was created to locate the 
lowest level (DTM) is used to separate the buildings within 
their complexes. Buildings with roofs are found in less densely 
populated areas, and in most cases already have enough spaces 
between them. Their polygons are, therefore, created just by 
locating the clusters on the XY plane after the classification and 
enclosing them with a boundary (Figure 4). The attributes 
contain three-dimensional information. Instead of the absolute 
Z information, in the data type (PolygonZ in the current project) 
the elevation from the ground (height of the building) is stored. 
In cases where there are no spaces between the buildings, 
RANSAC algorithm can be used to locate the planes of the 
roofs (Tarsha-Kurdi et al., 2008) 
 

 
Figure 4: Individual buildings with roofs 

 
On the contrary, buildings with terraces are usually in 
complexes, therefore clustering on the XY plane leads to 
polygons describing more than one building (Figure 5). 
 

 
Figure 5: Complexes of buildings with terraces 

 
Describing unique buildings within the complexes requires a 
criterion of separation. Computers are unable of recognizing 
whether one building has different parts with various colours or 
levels, or each of these parts is a separate building. Since the 
colour- value is similar for all the buildings, the criterion chosen 

was the level. Structures of different levels are considered to be 
different buildings and are described by different PolygonZ 
attributes.  
 
In order to locate the level where each terrace was, in the 
classified cloud, a modification of the DTM algorithm was 
created. Firstly, the entire cloud was segmented in parts- the 
size of one or two blocks offers best combination of time and 
results. In each of the parts, the algorithm searches for all the 
possible levels, and stores each building in a different file. 
Instead of searching for the minimum level, though, the 
equation was reversed and the algorithm started top to bottom 
adding the points from the maximum Z. The iteration step was 
once more provided by the user and the iterations were 
terminated as soon as the highest level was detected (Figure 5-
top). The initial required percentage is reduced to half; since the 
amount of noise is lower in the classified cloud (points with 
large elevation have been deleted). Each time the algorithm 
detects enough points to be considered as a new level and not 
noise, it saves that level in a separate cloud and removes it from 
the total cloud (Figure 5-bottom). The process continues for the 
rest of the points, and in each iteration i the required percentage 
is increased by i/2. The increase is necessary, because by 
reducing the total number of points in each loop, every 
remaining level occupies a larger percentage in the entire sub-
cloud. The process is terminated when the level found is equal 
to the minimum Z of the segmented area. Each of the buildings 
is described by a polygon, as in the buildings with roofs. In the 
attribute table of the polygons, apart from the elevation from the 
ground, the number of levels is calculated, by dividing the 
calculated elevation by an estimated floor’s height, and 
rounding it to the closest integer. The floor’s height varies, 
depending on the city’s urban planning design. 
 

 
Figure 6: Total cloud (top left), first highest level (top right), 

rest cloud (bottom left) and second highest level (bottom right) 
 
2.4 GIS processing 

Post- processing of the polygons in a GIS is a necessity due to 
various factors. First of all, by segmenting the cloud into 
smaller sub-clouds some buildings are cut in two or more 
pieces, each one in a different subset. The first required 
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correction, consequently, is to regenerate those buildings 
(Figure 7). Polygons of the same level overlapping or closer 
than 0.5 meters are dissolved into a single polygon in order to 
rectify the original building. 
 
 

 
Figure 7: Segmented building 

 
The second required processing is to eliminate parts of the 
buildings with flawed geometries, such as balconies, parts of 
noise between different structures etc. Those elongated 
polygons are rectified by converting all the polygons to 
polylines. The polylines are buffed to a certain distance to the 
inner side and then re-buffed to the outside of the polygon, as 
described in Figure 8. The blue line describes the original 
polygon and the black dashed line is the inner buff. The red line 
describes the rectified polygon. The size of the buff is 
determined based on the sizes of the buildings in the area.  
 

 
Figure 8: Eliminating elongated polygons 

 
As a result, parts of polygons with at least one side shorter than 
the selected buff size are deleted from the final outcome. 
 
Finally, due to the fact that polygons are extracted from a three- 
dimensional point cloud, apart from the buildings terrace or 
roof, parts of their front view are visible in lower levels and, 
therefore, enclosed in polygons. Those polygons overlap with 
the roofs and the higher levels, leading to more than one level- 
information for the same XY position (Figure 9). 
 

 
Figure 9: Overlapping areas of different level values 

 
Regarding all those overlapping areas any information below 
the highest level is deleted and stored only for the polygon of 
highest floor.  
 

3. IMPLEMENTATION 

The study area was in the center of Athens, Greece, covering an 
area of around 10 km2. The area was partially covered with 
thick vegetation and archeological sites. Moreover, the terrain 
was intense in the northern parts and smooth in the south- west.  
 
The initial data in the current project were eight (8) overlapping 
aerial images. The images were taken in two different flight 
strips, oriented vertically to each other. The exterior orientation 
of the images was known beforehand, and each image had 
information in four bands (red, green, blue and infrared band). 
 
3.1 Dense matching 

In the first stage of the implementation semi-global algorithm 
was run using the software Erdas Imagine. Stereopairs were 
created by images of the same strip in order to avoid 
interdictions with inaccurate geometry. Totally, six stereopairs, 
and therefore, six different point clouds were created. The 
radiance value and the absolute position (X,Y,Z) of the points 
were stored in each point cloud. The reference system used is 
GGRS ’87 and the estimated precision of the coordinates is 0.04 
meters. 
 
Having created the individual point clouds, they were all 
merged by an algorithm created in Matlab. Following the 
merging of the clouds, downsampling was applied by 
calculating the average of color and position within a box. 
Considering the ground pixel size of the cloud, which was 0.25 
meters, the grid box was selected at 0.24 meters, to maintain the 
initial spatial resolution. 
 
Outlier removal was also run using a Matlab function. In this 
particular application, the threshold was 45 points within one 
meter from each point. The threshold was determined  
experimentally after testing the algorithm both with larger and 
smaller thresholds. Comparing the total number of points before 
and after the outliers’ removal, the noise was estimated around 
2% of the cloud’s points. Parts of the final outcome of the 
procedure’s first part are presented in Figure 10, in RGB 4,3,2. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W10, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W10-11-2018 | © Authors 2018. CC BY 4.0 License.

 
15



 

 
Figure 10: Parts of the created point cloud 

 
3.2 Classification 

During the first part of the classification a new point cloud was 
created by applying the algorithm described in chapter 2.2. The 
larger side of a block in the entire study area was measured at 
70 meters; therefore, an area at least 100 meters long should 
contain one or more roads. The other side of the area was set at 
half the size (50 meters) to achieve the required denser 
sampling (Figure 11). 
 

 
Figure 11: Segmenting part of the cloud in sub-clouds  

 

 
Figure 12: Point cloud including ground-only points 

 
As described, the noise level was estimated around 2% during 
the outlier removal. Accordingly, any object consisted of more 
than 2% of the sub-cloud’s total points was less likely to be 
noise. A threshold of 5%, for a more solid result, was 
determined, and no color information was stored for this part of 
the algorithm. The results, after combining the outcomes in X 

and Y directions, for the whole study area are presented in 
Figure 12. 
 
By triangulating and smoothing the surface, a Digital Terrain 
Model was created, the distance from which was calculated for 
every point in the initial cloud. Points distant from the ground 
less than 7 meters, belong to either one-level buildings or to 
unneeded for the project constructions, such as kiosks, traffic 
lights, sculptures etc. One- level buildings are rarely found in a 
centre of a city like Athens, whereas all the other constructions 
are very common and need to be eliminated from the final 
outcome. In this part of the process, these points were deleted 
from the cloud, with the remaining classes being: tall 
vegetation, buildings with terrace and buildings with roofs. 
Moreover, points with elevation more than 45 meters from the 
DTM were deleted as well, reducing significantly the amount of 
remaining noise in the cloud.  
 
In the second part of the classification, NDVI was calculated for 
every remaining point. Figure 13 describes the values of each 
remaining class in the cropped cloud. 

 
Figure 13: Several classes in the NDVI’s scale 

 
The diagram was created after sampling; high values of the 
NDVI were recorded both for vegetation and buildings with 
roofs. Using a threshold for all the points with an index lower 
than 0.15, all the buildings with terraces are separated from 
vegetation. Along with the vegetation, though, all buildings 
with roofs were eliminated from the cloud due to having high 
NDVI values. The ratio 3/2 was calculated as well, and was, as 
expected higher than (1) in the “roofs” class. By applying both 
indexes simultaneously roofs and vegetation were excluded 
from the cloud and saved in separate files, leaving the last 
remaining class, buildings with terraces in the final cloud.  
 
The cloud including buildings with roofs was stored for further 
elaboration in the next stage, while for the cloud containing 
buildings with terraces further processing was required: the 
algorithm detecting the first level was applied to locate 
individual buildings within the complexes. Since the point 
cloud noise was reduced after the cropping, the threshold for 
accepting a level as large enough not to be an outlier was set at 
2%. The algorithm was searching for levels every 0.30 meters, 
and each level was stored in a separate file. All algorithms were 
programmed and run in Matlab. Visualization, triangulation, 
smoothing and cropping of the point cloud were completed 
using CloudCompare.exe. 
 
3.3 Polygon processing and GIS 

Each separate building was stored in a different file, and 
buildings with roofs were stored all in a different cloud. Using 
LasTools (lasboundary.exe), a polygon was created around each 
clustered part of the above clouds. All polygons were stored in a 
merged shapefile and were processed in ArcGIS and QGIS. 
ArcGIS was used to extract the third dimension’s information 
from the “PolygonZ” type features that were created in 
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LasTools, and store it in the attribute table. When locating the 
individual buildings instead of the actual Z position of the 
points, the third dimension was replaced with the distance from 
the DTM. The attribute table was updated with the distance 
from the ground, which separated by (3) states the number of 
different floors the building consists of (three meters is the 
average height of the floor according to Athens’ town planning 
regulation). All polygons were inserted in QGIS, where the 
processes described in chapter 2.4 were applied. Firstly, 
overlapping areas were attributed to the highest level. Secondly, 
using a buff of three meters, elongated polygons were removed 
from the data base, along with parts of larger polygons with 
flawed geometry. Segmented buildings were regenerated, and 
each level was stored in a separate shapefile. All the polygons 
describing the detected buildings were evaluated using the 
existing polygons available on openstreetmap.org.   
 
3.4 Openstreetmap update 

The final aim of creating the database is to automatically update 
open source data bases, as openstreetmap.org. Polygons 
describing building on openstreetmap are created voluntarily by 
users, and in their majority describe sufficiently the buildings. 
Recently, fields describing the third dimension (height and level 
for each building) were added for each attribute. Combining the 
two databases is a task still in process, due to a number of 
difficulties.  
 
First of all, polygons created in the current process are not 
identical to those on openstreetmap for various reasons. Users 
often digitize the buildings by describing the entire area around 
it, creating a polygon for the whole property and not just the 
building. Furthermore, users enclose in a polygon not only the 
main part of the building, but parts as balconies, garages and 
other collateral constructions. Moreover, as predefined, multiple 
polygons, created in this process, with different level-
information, might belong to the same building, since the 
algorithm describes the buildings more thoroughly than the 
openstreetmap polygons. Finally, more than one buildings of 
the same level, having no space between them, will be enclosed 
in the same polygon by this algorithm, whereas in manual 
digitization will be described by two or more separate attributes. 
All of the above are the reasons that updating data sources with 
automated methods is a complexity issue that requires several 
assumptions.  
 
One suggestion is to create a union of the two databases, and 
match each polygon to the highest elevation of the overlapping 
areas. For example, if one “openstreetmap” polygon overlaps 
with two different polygons created by the algorithm, we assign 
to the first the highest elevation value of the two. On the other 
hand, that highest-value overlapping area could be a penthouse, 
or a small part of a next-door building, and, therefore, the match 
will be flawed. Calculating the size of the overlapping areas 
between the polygons already available and the ones detected is 
a second approach. Then, the value assigned to the initial 
polygon will be the value of the detected polygon, with which 
the first shares the largest common area.  
 
During the current project we manually measured 100 
buildings’ heights in order to evaluate the results of the 
automatic detection, in lack of original data. Openstreetmap was 
updated with that information concerning the field “levels” in 
those buildings. Further update, automatically, is yet under 
study, since it requires a high accuracy of detection, combined 

with a high accuracy in determining the levels of each building 
and assigning it to the original data. 
 
 

4. EVALUATION 

The final results were evaluated based on the polygons available 
on openstreetmap.org. The results of a small part of the study 
area are presented in Figure 14. 

 
Figure 14: Openstreetmap polygons (blue) compared to the 

detected polygons (brown) 
 
The polygons were evaluated as to the number of detected 
polygons compared to the total existing building. As shown in 
Figure 14, due to various reasons (chapter 3.4) openstreetmap 
polygons appear larger than the ones detected by the algorithm. 
Openstreetmap dataset is created by users and not experts, and, 
therefore, the digitization of the buildings is not always accurate 
in shape and size. Detections that were not buildings were 
marked as “false alarms” (Table 1). 
 

Table 1 
 Total 

area 
Smooth 
terrain 

Intense 
terrain 

Number of detected 
polygons 84% 93.50% 83% 

False alarms 
1.50% 0.50% 4% 

 
In order to determine the reasons of non- detection, we also 
evaluated the results between the stages of the entire process. 
False alarms were reduced when detecting individual buildings, 
and were almost zeroed after the GIS processing. Eliminating 
the false alarms and removing the elongated parts of the 
polygons, though, had a high cost in the detection’s results. The 
percentages are shown in Table 2. 

 
Table 2 

Stage of the 
procedure 

Detection 
percentage/stage 

False 
alarms 

Threshold in 
elevation from DTM 

93% 40% 

Detecting building 
levels in complexes 

91% 20% 

GIS processing 84% 1.50% 
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Finally, based on the manually measured buildings, we 
evaluated the automatically calculated levels of the buildings, 
comparing the two values. Due to rounding the floor- numbers 
to the closest integer, even a small deviation in height (e.g. of 
0.20 meters) may lead to one floor’s difference. Only 4% of the 
buildings were totally miscalculated, especially because of poor 
description of the terrain (Table 3). 

 
Table 3 

Zero deviation 75% 

Deviation of 1 floor 21% 

More than 2 floors 4% 

 
Results regarding the entire study area are presented in Figure 
15, where the city planning model of Athens is reflected as 
previously described. Besides updating openstreetmap.org, the 
algorithm provides a first overall picture of the density and the 
height of all buildings in the city. Visualized by a graded palette 
from blue to red, totally 16.600 buildings were detected and 
mapped, as shown in the following picture: 
 

  
Figure 15: Polygons of buildings detected in the entire study 
area; higher (red) buildings are located around major road 
axes, whereas smaller (blue) buildings are mostly found in 

residential areas 
 

5. CONCLUSION 

The detection process combines photogrammetric and remote-
sensing methods with Geographical Information Systems. Using 
only aerial images, with no further data required it detects the 
major percentage of buildings for a large study area, low cost 
and time. Further improvement of the detection procedure (by 
using images in larger scale, different focal length, etc.), 
combined with additional available data for the area (DTM, 
LIDAR data) may lead to even higher detection rates along with 
higher accuracy in determining the levels of the buildings. 
Merging the datasets with already existing open source 
databases requires both an improvement on the detection 
algorithm and an effective GIS process to avoid data loss and 
false-updates.  
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