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ABSTRACT: 
 
3D reconstruction of the urban environment constitutes a well-studied problem in the field of photogrammetry and computer vision, 
attracting the growing interest of the scientific community, for many years. Although the current state of the art present very 
impressive results, there is still room for improvements. The production of reliable and accurate 3D reconstructions is useful for a 
wide range of applications, such as urban planning, GIS, tax assessment, cadastre, insurance, 3D city modelling, etc. In this paper, a 
methodology for the automatic 3D reconstruction of buildings roof tops in densely urbanized areas, utilizing dense point clouds data, 
is proposed. It consists of three (3) main phases, each of which comprises a set of processing steps. In the first phase, the point cloud 
is simplified and smoothed. Outliers and non-roof elements are detected and removed utilizing shape, position and area criteria. In 
the second phase, the geometry buildings roof tops is optimized, by detecting and normalizing the edges. In the last phase, the 
reconstruction of the buildings roof tops is conducted. A progressive process, utilizing a plane fitting algorithm in combination with 
Screened Poisson Surface Reconstruction is performed. Buildings roof tops surfaces are produced and optimized. A software tool is 
developed and utilized for the implementation of the proposed methodology. The produced results are assessed and a comparison 
with another open-source software is conducted. The proposed methodology seems to be effective providing satisfactory results, as it 
can manage properly the really noisy point clouds of densely urbanized environments. 
 
 

1. INTRODUCTION 

Over the last twenty years, the automatic extraction and 
reconstruction of 3D buildings has been a major research focus, 
trying to replace the manual reconstruction of buildings from 
aerial imagery via stereoscopy or from LiDAR (Light Detection 
And Ranging) data, which are time consuming and laborious 
tasks. In order to achieve full automation, aerial imagery and 
LiDAR data need to be used in synergy in order to utilize their 
superior positional and height resolutions respectively. Recent 
advances in computer vision technology, the increasing quality 
of digital airborne cameras as well as the recent innovations in 
matching algorithms, have already demonstrated digital image 
matching as a valid alternative to airborne LiDAR. Therefore, 
the computation of dense 3D point clouds and the generation of 
Digital Surface Model (DSM) with surface resolution similar to 
the ground sampling distance of the available imagery, is 
feasible. 3D point clouds and DSMs, are of fundamental 
importance for 3D reconstruction of real-world, as they guide 
the overall reconstruction process, providing information about 
the studied surface. In recent literature several methods have 
been developed and proposed for building detection, 
recognition and reconstruction. Building outline consist an 
important geospatial information for several applications, such 
as urban planning, GIS (Geographic Information System), tax 
assessment, cadastre, insurance, 3D city modelling, etc (Wang, 
2016). Automatic building extraction and reconstruction from 
remote sensing images are difficult tasks, as the detection 
accuracy and the quality of the produced surface, depends 
heavily on image resolution, quality and buildings shapes 
(Köhn et al., 2016).  
 
In this paper, a methodology for the automated reconstruction 
of noisy buildings roof tops, is proposed. The main interest 
focuses on densely urbanized areas where buildings roof tops 
are distinguished by a high level of complexity due to the 

existence of non-roof, structural or non-structural man-
mounted, elements. Based on some generic knowledge on 
building, it is possible to detect and remove such noise 
providing an effective reconstruction. As initial data for the 
function of the proposed procedure, a dense point cloud derived 
from nadir aerial images through dense matching techniques, is 
considered. In Section 2, a review of the current methods, 
techniques and algorithms, concerning the 3D reconstruction, is 
presented. In Section 3, the proposed methodology is analyzed. 
In Section 4, the developed software is presented and an 
implementation of the proposed procedure, is conducted. 
Furthermore, in Section 4, an assessment of the produced data 
and a comparison with the results of other software is made. 
Finally, in Section 5, the main conclusion referring to this work 
are presented.  
 
 

2. RELATED WORK 

3D reconstruction of real-world environment is an active 
research area. Although the current state of the art present very 
impressive results, there is still room for improvements. In 
recent literature several 3D reconstruction approaches have 
been proposed. These methods can be divided into three general 
categories based on the degree of contextual knowledge as: (a) 
Model-driven methods (parametric modeling), (b) Data-driven 
methods (non-parametric modeling), and (c) Hybrid methods 
(Gkeli et al., 2017). Model-driven or top-down approaches 
require primary knowledge about the shape of the buildings. 
The evaluation of the best-fitted 3D model is based on a library 
or grammar of predefined parametric shapes. Parametric 
methods are resilient to noisy and incomplete data, producing a 
topologically correct output model. However, their adaptability 
to various applications is limited by the narrow variety of the 
predefined shapes. In recent literature there are several 
Grammar-based automatic and semi-automatic reconstruction 
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procedures. The most well-known examples are Lsystems 
(Lindenmayer-systems), Shape Grammars (McKay et al., 2012; 
Karantzalos and Paragios, 2010), Split Grammar (Wonka et al. 
2003), Computer Generated Architecture (CGA) Grammar 
(Müller et al., 2006), Formal Grammars (Becker and Haala, 
2009) and Attributed Building Grammar (Yu et al., 2014; Yu et 
al., 2016).  
 
Data-driven or bottom-up approaches are more flexible as they 
do not require any prior knowledge about a specific building 
structure. In recent literature, the majority of the proposed data-
driven methods tend to extract points related to building’s roof 
structure and classify them into different roof planes with 2D 
topology. The geometry of the roof can be described by a set of 
geometric primitives (planes, lines etc.) on which the 3D 
reconstruction procedure is based. Points can be clustered into 
planes based on similar attributes, such as: normal vectors, 
distance to a localized fitted plane or height similarities 
(Rottensteiner et al., 2014). Current data-driven methodologies 
and algorithms may be divided into four (4) general categories: 
(a) plane fitting based methods, (b) filtering and thresholding 
based methods, (c) segmentation based methods and (d) 
different supervised classification methods (Makantasis et al., 
2015; Alidoost and Arefi, 2016). In the recent literature there 
are several approaches trying to apply plane fitting based 
methods on 3D point clouds, derived either from active sensors 
(e.g., LiDAR) or produced through photogrammetric 
procedures. The most well-known examples of algorithms used 
in this category are random sample consensus (RANSAC) 
algorithms (Fischler, 1981), least squares planar fitting 
algorithms (Omidalizarandi and Saadatseresgt, 2013) and plane 
fitting based algorithms (McClunea et al., 2016). Wang (2016), 
proposed a methodology for the detection and extraction of 
buildings roof outlines utilizing a dense point cloud derived 
from high-resolution aerial imagery. The proposed methodology 
tends to extract the ground surface using a polynomial surface 
adaptation method and then extract the buildings volumes by 
the production of nDSM (normalized DSM). Utilizing various 
radiometric and other criteria for the classification of all the 
elements located on buildings roof top, the outline of the roof is 
extracted through a split-and-merge method. Dal Poz and 
Fernandes (2016) proposed a methodology for the extraction of 
buildings boundaries and roof ridgelines, with the combined use 
of high-resolution aerial images and ALS (Aerial Laser 
Scanner) data. ALS data are utilized to limit the amount of 
straight lines representing the roof boundaries and then, Steger 
line detector and Canny edge detector are applied to the images, 
to identify lines within the limited area of the interior of the 
polyhedrons. Köhn et al. (2016), proposed a different method 
for the detection and reconstruction of the building roof, using 
aerial images. A line segment detector (LSD) is applied, in 
order to identify straight line segments through a region 
growing method among pixels with similar intensity and 
orientation. Utilizing some assumptions about buildings shape 
(rectangularity), buildings are detected. Finally, 3D buildings 
roofs are reconstructed by a RANSAC-based plane fitting 
procedure. An alternative and under-explored approach, is scan 
line segmentation which uses cross sections for segmenting 
planar features (Rottensteiner et al., 2014). McClune et al. 
(2014) proposed a methodology to derive the geometry of 
building boundaries using aerial images. The height differences 
along the 2D sections are examined using the DSM. Roof 
boundaries are identified as the parts with intense height 
differences.  
 

Once the point cloud representing building’s structure parts is 
defined through the abovementioned methods, the respective 
surface has to be reconstructed. Through numerous approaches, 
surface reconstruction methods can be divided into two (2) 
broad categories: (a) combinatorial algorithms and (b) implicit 
functions. Combinatorial algorithms introduce relationships 
between the points of the input data. These algorithms tend to 
divide the 3D space utilizing a tetrahedralization or voxel grid, 
clustering data through a topological analysis. The main 
disadvantage of these methods is that maintain the noise or 
corruption included in the initial data. An example of such an 
algorithm is the Ball pivoting algorithm (Bernardini et al., 
1999). The basic idea of this algorithm is that a ball is moving 
around the 3D space trying to connect three points at a time. 
The ball is initially connected with two points of the input data 
and moving around until it intersects with a third point. Thus, 
triangles between the points of the input cloud are created. On 
the other hand, implicit functions present a more robust 
approach. In cases of noisy data, a common approach is to fit 
points using the zero set of an implicit function. Implicit 
methods usually based on the interpolation of the data or on 
approximating a surface near the input data. The most 
commonly known implicit methods of the latter case, are 
marching cubes (Lorensen and Cline, 1987) and Poisson surface 
reconstruction (Kazhdan, 2006; Kazhdan and Hoppe, 2013). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Workflow of the proposed methodology 
 
Poisson surface reconstruction (Kazhdan, 2006) is a well-
known technique, able to produce watertight surfaces from 
oriented point samples. While the most implementations 
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encountered in the current literature, use Poisson reconstruction 
in order to reconstruct surfaces from data derived by active 
sensors (e.g., terrestrial scanners) (Kazhdan, 2006; Kazhdan and 
Hoppe, 2013), this technique may provide very promising 
results utilizing other data sources (e.g., dense cloud from aerial 
images). Poisson surface reconstruction is resilient to noisy data 
and misregistration artifacts, and so it may be used for the 
reconstruction of complex urban scenes, following specific 
methodological steps. As it represents an implicit function, the 
produced result of this technique is a smooth approximate 
surface, positioned near the initial data. This encourages the 
usage of adaptive octree for the representation of the implicit 
function as well as for the solution of the Poisson system 
(Kazhdan, 2006). An important characteristic of Poisson surface 
reconstruction is the tendency to oversmooth the data. This may 
be undesirable in the most of the cases, but it can be adjusted to 
the current needs of each implementation, by defining the depth 
of the octree. The form of simple Poisson surface reconstruction 
is based on the normal field (inward pointing), which represents 
the boundary of a solid and may be interpreted as the gradient 
of the solid’s indicator function. Thus, the main phases of 
Poisson surface reconstruction of a set of oriented points, may 
be defined as follows: (a) transformation of the oriented point 
cloud into a continuous vector field in 3D, (b) finding a scalar 
function whose gradients best match the vector field, and (c) 
extraction of the appropriate isosurface. In the proposed 
methodology screened Poisson reconstruction is utilized 
(Kazhdan and Hoppe, 2013). This approach is based on the 
traditional Poisson surface reconstruction (Kazhdan, 2006), 
incorporating positional constraints referred to the points data. 
By the term screening, a soft constraint that encourages the 
produced isosurface to pass through the input points, is implied. 
The main feature which differentiates the screened Poisson 
reconstruction over its traditional approach, is that the gradients 
are not constrained over the full 3D space, but the positional 
constraints are introduced only over the input points, which lie 
near a 2D manifold (Kazhdan and Hoppe, 2013).  
 

 
Figure 2. The mean distances to k = 30 neighbours before and 

after removal using α = 1 (Rusu, 2009) 
 
 

3. METHODOLOGY 

In this section, the proposed methodology for the automatic 3D 
reconstruction of buildings roof tops dense point cloud, in 
densely urbanized areas, is presented. It consists of three (3) 
main stages, as illustrated in Figure 1. 
 
3.1 Point Cloud Noise and Outlier Removal 
 
Before attempting to begin the reconstruction procedure and 
estimate the characteristics of a point in the initial point cloud, 
it is important to examine if this point represents adequately the 
underlying surface.  
 

3.1.1 Statistical Outlier Removal (SOR): Outliers’ removal 
may be conducted through the analysis of the surrounding 
neighbours of a point, utilizing mathematical analysis of their 
measured positions (Rusu, 2009). A point pq may belong to the 
surface of an object if there are enough neighbours (k ≥ kmin) in 
the vicinity of the query point. Certainly, point clouds densities 
vary accordingly to the current generation method and the 
particularities of the object’s surface, such as shiny surfaces, 
depth discontinuities, or occlusions, creating false outliers and 
ghost structures. However, removing outliers is an essential 
step, leading to more reliable results and reduces the processing 
time. 
 
The proposed methodology is based on a statistical analysis 
proposed by Rusu (2009). The algorithm examines each point 
of the point cloud (pq ∈ P), calculating the mean distance d of 
its k neighbours. Then, a distribution over the mean distance 
space for the entire point cloud P is assembled and its mean µk 

and standard deviation σk are estimated. The main purpose is the 
production of a homogeneous point cloud, by excluding the 
points whose mean distance d differs greatest from the rest of 
the point of P (Figure 2). Thus, the remaining point cloud P* 
derived according to equation (1). In the proposed methodology 
the selected k value is equal to 50 and α is equal to 1.0. 
 
 
 
where      P = initial point cloud 
                P* = filtered point cloud 
                μk = mean deviation 
                σk = standard deviation 
                α = desired density restrictiveness factor  
                d = mean distance  
 
3.1.2 Moving Least Square (MLS) smoothing: In this 
section, another optimization step able to filter out the noise and 
produce a smoothed surface, is presented. Moving least square 
algorithm (MLS) (Rusu et al., 2008; Alexa et al., 2003) tend to 
suppress outliers of a point cloud P by resampling (either 
upsampling or downsampling) and discarding unwanted data. 
Given a set of points P, MLS algorithm reproduce the complete 
smooth surface by fitting higher order bivariate polynomials to 
point in the vicinity of each query point pq. In contrast to other 
interpolation or resampling techniques, MLS algorithm produce 
more robust results as the fitted surface passes through the 
original data. In the first step, the coordinates of each point pq 

are normalized, utilizing the diagonal bounding box of the point 
cloud, ensuring a uniform distance between the points. The 
weight factor is estimated through equation (2): 
 

h = μd + k * σd                                    (2) 
 

where h = weight factor 
           μd = mean deviation of the distribution of mean distances  
                   between points 
           σd = standard deviation of the distribution of mean  
                  distances between points 
           k = nearest neighbours of the query point pq  
 
Next, the initial point cloud is resampled by estimating an 
approximate set of points Q, which is presented as a set of 
equidistant grid points, located in vicinity of the initial point 
cloud P. These points will be projected onto a local reference 
plane fitted through their k nearest neighbours Pk. The points in 
the local neighbourhood of each query point pq may be 

P* = {p*
q є P| (μk - α·σk) ≤ d* ≤ (μk + α·σk) }             (1) 
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identified, either by the number k of their nearest neighbours or 
by using a fixed radius r, including a sub-set of P. Then, each 
point of Q is fitted to a surface which approximates the original 
data using a bivariate polynomial height function in a local 
Darboux frame. In most cases, 2nd order polynomials produce 
good results as the most areas are either planar or curved in only 
one direction. In the proposed methodology where the buildings 
roof tops may be estimated approximately through planar 
surfaces, the utilization of such a MLS algorithm with 2nd order 
polynomial function is selected. In this approach a MLS 
algorithm proposed by Rusu (2009) is selected. This algorithm 
is utilized in order to simply resample data without upsampling 
or downsampling the initial point cloud. Thus, the MLS 
algorithm optimize data position with respect to the 
approximate underlying smooth surface. The produced 
smoothed point cloud contains the same number of points with 
the initial cloud, possibly moved to a better approximate 
position if is needed.   
 
3.1.3 Detection and Removal of non-roof objects: In cases 
of buildings roof tops there is a more complicated kind of noise 
referred to non-building’s structure man-mounted objects (e.g., 
chimneys) or building’s parts which are not included on the 
building roof top but to another lower height level from it (e.g., 
balconies). All these parameters of noise, strongly affect the 
overall reconstruction pipeline, resulting to inconsistent 
representations of the roofs structure. The detection and 
removal of such elements is essential. For the automatic 
extraction and reconstruction of buildings, some generic 
knowledge on buildings should be considered and utilized as 
geometric constraints. Building or floor height, size, shape 
regularity, roof surface smoothness, homogeneity and 
occlusions by trees or shadows, are some of the geometric and 
radiometric contextual properties about buildings structure and 
errors sources (Wang, 2016). In cases of densely urbanized 
areas, where buildings are partially-attached to neighbouring 
buildings with varying heights, the detection and removal of 
non-roof objects requires a bottom-up analysis of the building 
structure with respect to adequate geometric constraints.  
 
The proposed methodology follows a sequence of five (5) 
discrete steps, trying to remove non-roof elements. The first 
step includes a bottoms-up segmentation of the point cloud. The 
algorithm searches the point cloud in order to find the point 
with the lower height and continues the segmentation by 
grouping points whose height difference is less than 3m. Given 
the fact that the initial point cloud may include points 
representing building’s parts of a lower level, the 3m threshold 
is chosen as it corresponds to a typical floor height. This 
assumption divides the search space into smaller parts, 
facilitating the imposition of geometric constraints. Then, each 
of the height clusters derived from the first step, is processed 
separately. Each one of the height clusters include points with 
height difference less than 3 m. However, their distribution 
through the horizontal plane defined by X and Y axis, varies. 
Thus, for each one of the height clusters a simple Euclidean 
distance threshold based clustering algorithm (Rusu, 2009) is 
applied with a distance tolerance of 1m, in order to identify the 
individual points groups. At this phase, the point cloud is 
segmented in individual parts, each of which represents an 
element or object of buildings surfaces. Then, the process 
continues on the basis of certain assumptions. Given the fact 
that the surface of each building consists of several planar 
segments, a RANSAC based plane fitting algorithm (Fischler, 
1981) with a threshold of 0.5m is applied to each one of the 
grouped points of the produced height clusters. The threshold of 

0.5m is selected, in order to optimize the plane detection 
procedure, removing non-roof objects (noise) with height less 
than 0.5m. Subsequently, an initial normalization of the points 
position according to the detected planar segments is conducted, 
through the projection of the inliers on the detected plane and 
the removal of the outliers from the point cloud.  
 
In the next step, each one of the detected groups which include 
the remaining points after the normalization of the point cloud, 
is checked against two certain criteria. The first criterion refers 
to a shape constrain. A group of points corresponding to a lower 
height level from the roof, in most of the cases, represent a 
balcony. This building element consist a non-roof structure, 
causing errors to the reconstruction procedure. However, it has 
some structural and geometric characteristics able to 
differentiate it from the rest building’s elements. The basic 
dimensions of a balcony, length and width, are disproportionate 
resulting to a high valued ratio. Thus, this finding is used as a 
criterion for the detection of such elongated features in the point 
cloud and remove them. Subsequently, for each one of the 
groups of points, we calculate and construct the respective 
oriented bounding box (OBB), based on eccentricity and 
moment of inertia (Pratt, 2001; MOI, 2018). First of all, the 
covariance matrix is calculated and its eigen values and vectors 
are extracted. An iteration process begins where the major eigen 
vector is rotated continuously, around the other eigen vectors. 
For every current axis moment of inertia and eccentricity is 
calculated. Then, eccentricity is calculated for the obtained 
projection. In order to find the dimensions of the OBB, a 
transformation into the local frame of the box is calculated, 
keeping track of the minimum and maximum coordinates in 
each direction. Thus, utilizing the coordinates of OBBs corners, 
the calculation of its minimum and maximum sides is 
conducted. As threshold for the acceptance of a group of points 
as roof part, the ratio of 4 is selected, as it provides the best 
detection performance. The definition of the ratio is calculated 
through the equation (3). 
                                                     
                                                                     ≤ 4                       (3) 
 
 
where  ratioOBB = ratio between the max and min OBB distances 
            DmaxOBB = maximum length of OBB 
            DminOBB = minimum length of OBB 
 
The second criterion refers to an area constrain. An object may 
be included in the main structure of a building only if its area 
exceeds a certain threshold. Otherwise, this object consists a 
non-structural object (e.g., chimneys) causing noise, and thus 
need to be excluded from the point cloud. As minimum 
accepted area of a group of point, 10m2 is selected. In reality, 
the size of 10m2 refer to enough small objects which may be 
included in the main structure of the building. However, the 
calculated area concerns a surface with multiple anomalies, and 
thus the minimum area assumption consists a satisfactory 
threshold for the proposed methodology.  
 
3.2 Edge Detection and Normalization  

One of the basic structural features of buildings roof tops is the 
regularity of their shapes. The roof tops edges are smooth and in 
the majority of cases their intersections are orthogonal. The 
normalization of edge points is of great importance, as the edges 
in the point cloud presented as “trembling lines” due to the non-
uniform distribution of points, along with the remaining noise 
in the data (e.g., due to occlusions). In the proposed 

ratioOBB  =  
 

DmaxOBB 

DminOBB  
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methodology, edge detection is conducted with the multi-scale 
difference of normals (DoN) operator (Ioannou et al., 2012). 
DoN operator, is similar to the Difference of Gaussians (DoG) 
operator, providing very good results in identifying points 
saliency according to scale. In order to identify edges points, 
DoN operator utilize the estimated surface normal map of the 
point cloud. As the surface normals estimated at any radius r, 
reflect the underlying geometry of the surface at the scale of 
each support radius, this method is appropriate in order to 
identify areas with high differences which present the edges 
areas. In the literature there are several approaches arguing that 
edge detection may be conducted based on the surface curvature 
changes, but this is not the only way. While DoN seems to be 
enough simple, is shown to be surprisingly powerful as normals 
are less effected by noise compared to higher order derivative 
quantities such as curvature (Ioannou et al., 2012). In the 
proposed methodology normals estimation is conducted 
utilizing the approach proposed by Alexa et al. (2003) and 
extended by Rusu et al.(2008). According to this specific 
approach, normals estimation is conducted according to the 
characteristics of the points which are included in a support 
radius r around the query point p. This radius determines the 
scale in the surface structure which the normal represents. The 
basic idea of the DoN operator, is to compare the responses of 
the surface normals between two different radius r1 < r2. DoN 
operator ∆n is calculated for each point p of the point cloud P. 
The utilization of the surface normals for a small and a large 
radius is selected in order to examine the upmost of the surface 
features. A small support radius is affected by small-scale 
surface structures. In contrast a large support radius is more 
robust in small-scale effects and represent the geometry of 
larger scale surface structures (Figure 3). 
 

 
Figure 3. The meaning of large (left), small support radius 

(middle) and the calculated DoN operator (right) (Ioannou et 
al., 2012)   

 
DoN is calculated for each point p in the point cloud P, and 
then a vector map is created. As each DoN presents the 
normalized sum of two normal vectors, its magnitude is varying 
through the values [0,1]. Setting a certain threshold on this 
magnitude, the extraction of the points related to the edges are 
extracted. In the proposed methodology a small support radius 
of 1m and a large support radius of 10m are used. As DoN 
threshold a value of 0.80 is selected, as presented the best 
performance. After extracting the detected edges points, a 
RANSAC based line fitting algorithm (Fischler, 1981; Rusu, 
2009) with a threshold of 0.5m, is imposed upon them. Thus, 
edges points are normalized, by projecting them onto the 
estimated line, in order to satisfy as much as possible, the 
regularity criterion of roofs structure.    
 
3.3 Partial Surface Reconstruction 

Reconstructing 3D surfaces is a well-studied problem, attracting 
the growing interest of the scientific community, for many 
years. Although there is an impressive amount of different 
approaches (Yu et al., 2014; Makantasis et al., 2015; Yu et al., 
2016; Alidoost and Arefi, 2016; Köhn et al., 2016; McClunea et 
al., 2016), aiming the 3D reconstruction of the real world, there 
is still room for improvements. In the proposed methodology, 

screened Poisson surface reconstruction (Kazhdan and Hoppe, 
2013) is utilized, for the reconstruction of buildings roof tops in 
densely urbanized areas.    
 
In this phase the 3D reconstruction of the refined point cloud 
derived from the previous steps, is attempted. The main idea of 
this algorithm is to provide a top-down approach, 
reconstructing partially the detected planar surfaces, 
constructing the buildings roof tops. Due to the high level noise 
presented in the data of an urban scene, as described in section 
3.1.3, the reconstruction of the planar roof tops surfaces is not a 
trivial neither an easy target. The algorithmic procedure 
followed in this phase, consist of five (5) certain steps. In the 
first step, a top-down segmentation per 1m, of the refined 
points, is conducted. The algorithm searches the point cloud in 
order to find the highest point and continues the segmentation 
by grouping points whose height difference is less than 1m. The 
selection of 1m, as a threshold for the segmentation process, is 
decided based on the assumption that in each section of 1m of 
the vertical dimension of a building it is possible the existence 
either of a planar surface or a vertical surface. Due to the fact, 
that the proposed procedure refers to point clouds produced 
from nadir aerial images, points presenting the vertical elements 
of a building may be very few and presented rarely in the point 
cloud, causing noise. Thus, at each section of 1m the existence 
of a planar surface, is very likely. However, in contrast with the 
possible distribution of planar surfaces along the vertical 
direction, their horizontal distribution is not obeying the same 
premise. In the horizontal direction, buildings roof tops may be 
connected semi-detached or detached with the neighbouring 
buildings. Thus, in the next step, a simple Euclidean distance 
threshold based clustering algorithm is applied to each one of 
the height clusters, with a distance tolerance of 3m in order to 
identify the individual points groups, which represent 
neighbouring planar surfaces. Subsequently, a RANSAC based 
plane fitting algorithm with a threshold of 0.5m, is applied to 
each one of the grouped points of the produced height clusters. 
Subsequently, the detected inliers are projected on the estimated 
plane and the outliers are removed from the point cloud. This 
step is important, in order to optimize each one of the grouped 
points, reducing the remaining noise from the previous stages. 
The final acceptance of each point group as possible 
representation of a building’s planar element, is done if the 
corresponding area exceeds 5m2.  
 
Once a group of points is optimized and checked against the 
threshold of 5m2, the surface reconstruction of the 
corresponding planar surface is conducted, through utilizing 
screened Poisson surface reconstruction (Kazhdan and Hoppe, 
2013), with octree depth equal to 8. The reconstruction of each 
one of the point groups separately, is selected, in order to force 
the produced surface to fit to these certain points without trying 
to change the final shape of the produced surface, in order to fit 
to the whole point cloud. The next step, concerns a particularity 
that presented from screened Poisson surface reconstruction 
algorithm. Poisson surface reconstruction algorithm tends to 
surround the data, in order to achieve the best possible fitting of 
the calculated surface. Thus, unnecessary surface extensions are 
created at the boundaries of the studied object. These extensions 
need to be removed, in order to produce a reliable 
reconstruction. For this reason, the concave’s hull polygon 
(Rusu, 2009) referred to each one of the point groups, is 
calculated. Subsequently, the final reconstruction presenting the 
roof tops of the buildings in densely urban areas, is produced 
cropping Poisson Surface along the boundaries of Concave’s 
Hull polygon with alpha parameter equal to 5. 
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4. IMPLEMENTATION 

For the implementation of the proposed methodology a software 
in programming language C++ has been developed, utilizing the 
libraries of PCL - Point Cloud Library 1.8.0 (PCL, 2018), VTK 
- Visualization Toolkit (VTK, 2018) and Eigen (Eigen, 2018). 
The developed software requires as input an ASCII or Binary 
PCD (Point Cloud Data) file, containing the coordinates X, Y, 
Z of a dense point cloud representing an urban scene, and 
produce as output a VTK file, containing the reconstructed 
surface of the buildings roof tops. For the evaluation of the 
proposed methodology a test was conducted. The produced 
results are assessed and compared to the results of other free 
software.   
 
The test area is located in the centre of Athens, Greece and is 
characterized by densely constructed semi-detached buildings 
with varying heights. As it is depicted in the Figure 4 the 
separation between the individual roof tops is quite difficult. 
Subsequently, the roof tops of the buildings are not represented 
by smooth surfaces, but on the contrary they have complex 
geometry due to the existence of several non-structural objects 
positioned on their surfaces. As test data for the implementation 
of the proposed procedure a dense point cloud derived by a set 
of aerial images has been utilized (Figure 5, left). The point 
cloud was inserted in the developed software, so as the 3D 
reconstruction of buildings roof tops be produced.  
 

 
Figure 4. An orthophoto depicting the tested area of densely 

urbanized area in the centre of Athens, Greece 
 
At the first step of the proposed methodology, outliers are 
removed from the initial point cloud and then an MLS 
smoothing with radius of 1m, is applied. Subsequently, a 
bottom to top segmentation of the point cloud is conducted, 
clustering the cloud into several height levels. As depicted in 
Figure 5, the greater amount of noise has been removed. Each 
of the levels presented with a random selected colour. In the 
step, Euclidean distance-based clustering is conducted, in order 
to divide the point cloud into several groups of point, each one 
of them consist a candidate element of building’s structure. 
Each one of these groups are assessed against the shape and 
area criterions proposed, in section 3.1.3. In Figure 6, the 
results of this step are presented. Each one of the detected group 
of points is presented with different random colour, while the 
calculated oriented bounding boxes (OBB) on which the shape 
criterion is applied, are identified with white colour. The results 
of the first step are satisfying, as the majority of noise and non-
roof objects were detected and removed from the point cloud. 
However, in some cases non-roof structures, such as balconies, 

with area size more than 10m2 located in a lower level from the 
roof tops, remain in the cloud and presented as isolated 
segments. An example of such false-detected roof element, is 
depicted in a red circle in Figure 6, left. Also, the existence of 
repetitive elongated structures on the surface of the roof top, 
may be confused and be considered as noise, so these structures 
are considered as noise and removed from the point cloud 
(Figure 7). However, the presentence of such particular 
examples is not constituted a common case. Thus, the detection 
and optimization of the point cloud, removing outliers and non-
roof elements, leads to satisfactory results.  
 

  
Figure 5. The input point cloud (left) and the segmented per 3m 

cleaned point cloud of the urban area (right)  
 

 
Figure 6. The detected roof elements presented in random 

colour, surrounded by the OBB and a false-detection presented 
in the red circle   

 
In the next step DoN operator is calculated, and the detected 
edges of the point cloud are refined. In Figure 8, the detected 
edges (left) and the refined point cloud (right) are presented. 
The refined boundaries are normalized, in order to satisfy the 
shape regularity constrain. Finally, in the last step of the 
proposed procedure, the automatic surface reconstruction of the 
buildings roof tops is conducted. The produced results are 
presented in Figure 9. Although there were some false-
detections referring to roof and non-roof elements, the produced 
results are satisfactory as the final model represents reliably the 
buildings roof tops, as smooth surfaces (Figure 9). The 
remaining noise is rarely presented as isolated surface segments 
far away from the buildings.       
 
In the next step, the evaluation of the produced data against the 
corresponding reconstruction results derived from another 
open-source software, is conducted. For the comparison, the 
software of MeshLab (MeshLab, 2018) and CloudCompare 
(CloudCompare, 2018) were utilized. The test point cloud 
inserted in each one of the software. At the first phase the noise 
is removed from the data, and then point normals are calculated 
based on a neighbourhood of k = 30 neighbouring points. At the 
last phase, the Screened Surface reconstruction algorithm with a 
depth of 8, is performed. In Figure 10, the results derived from 
MeshLab are depicted. The building roof tops presented as 
noisy rough surfaces, while the roof tops boundaries are 
presents as wavy segments. Also, at sparse positions on the roof 
tops surfaces, holes are presented, changing their geometry. 
Non-roof elements remain in the scene complicated the 
processing procedures. Subsequently, the results derived from 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W10, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W10-47-2018 | © Authors 2018. CC BY 4.0 License.

 
52



 

CloudCompare are depicted in Figure 11. The produced results 
are presented smoother in contrast with the previous of 
MeshLab. However, roof tops surfaces consist of multiple 
anomalies while their boundaries are difficult to be identified 
accurately. Furthermore, noise referring to non-roof elements, 
as balconies, vertical walls, are remain in the data as well as 
holes on roof tops surfaces are appeared. Thus, according to the 
abovementioned findings and assessments, appears that the 
proposed methodology is effective, reliable, can cope with noisy 
and complex data providing a promising solution for the 
reconstruction of densely urban scenes.  
 

 
Figure 7. An example of false-detection of noise. In the red 
circles, the removed roof top elements are presented in the 

orthophoto (left) and in the result of the first step of the 
proposed methodology (right) 

 

 
Figure 8. The detected edges (left) by DoN operator and the 

refined point cloud with normalized edges (right)  
 

 
Figure 9. The result of the proposed 3D reconstruction 

methodology (left) and the height colorized representation 
(right) 

 
 

5. CONCLUSIONS  

This paper proposes a methodology for the automated 
reconstruction of point clouds representing complex and noisy 
urban areas. The proposed methodology is able to detect non-
roof top building’s elements and exclude them from the data. 
Simultaneously, by imposing several constrains referring to 
floor height, size, shape regularity, surface smoothness and 
homogeneity succeeds to produce a reliable and qualitative 
result, by presenting each building’s roof top as a smooth and 
enough regular surface. The developed software, implementing 

the proposed methodology, produce a remarkable result, which 
outperforms over the compared software. The data produced 
through the proposed methodology, may be utilized by a wide 
variety of applications, such as 3D Cadastre, urban planning, 
GIS etc., facilitating the necessary 3D reconstruction 
procedures.  
 

      
Figure 10. Screened Poisson Reconstruction of the tested area 

in MeshLab 
 

 
Figure 11. Screened Poisson Reconstruction of the tested area 

in CloudCompare 
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