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ABSTRACT:

Architectural building models (LoD3) consist of detailed wall and roof structures including openings, such as doors and windows.
Openings are usually identified through corner and edge detection, based on terrestrial LiDAR point clouds. However, singular bound-
ary points are mostly detected by analysing their neighbourhoods within a small search area, which is highly sensitive to noise. In
this paper, we present a global-wide sliding window method on a projected façade to reduce the influence of noise. We formulate the
gradient of point density for the sliding window to inspect the change of façade elements. With derived symmetry information from
statistical analysis, border lines of the changes are extracted and intersected generating corner points of openings. We demonstrate
the performance of the proposed approach on the static and mobile terrestrial LiDAR data with inhomogeneous point density. The
algorithm detects the corners of repetitive and neatly arranged openings and also recovers angular points within slightly missing data
areas. In the future we will extend the algorithm to detect disordered openings and assist to façade modelling, semantic labelling and
procedural modelling.

1. INTRODUCTION

With the increase in global warming, industrialization, urbaniza-
tion, etc. the planning of every detail in a city becomes highly
important. Each step in urban planning has to be carefully ana-
lyzed and worked upon to derive best possible solutions among
various stakeholders. In a smart city a 3D city model serves as a
platform to run e.g. environmental simulations, master planning
applications, disaster management applications, etc. The digital
twin of a city should represent the reality as close as possible with
high level of detail (LoD). City models at LoD3, as described in
the CityGML 2.0 standard (Open Geospatial Consortium, 2012),
are architecturally detailed models. They contain openings (win-
dows, doors), roofs mapped in more detail (including dormers,
chimneys, and roof overhangs), and contain significant façades
structures (Gröger and Plümer, 2012). Besides providing a quite
realistic representation for visualisation purposes (Garnett and
Freeburn, 2014), such models are highly valuable for applica-
tions, like assessing energy retrofits (Previtali et al., 2014), en-
ergy simulations (Southall and Biljecki, 2017), and calculating
the solar potential of walls (Catita et al., 2014). LoD3 models
can be gained from architectural plans (Donkers et al., 2016) and
with procedural modelling (Müller et al., 2006, Martinović et al.,
2015).

Many of the existing 3D city models have a sufficient level of de-
tail (LoD) to fulfill specific requirements, but realistic informa-
tion, such as the precise geometry of façades, is missing. Light
Detection and Ranging (LiDAR), as known as laser scanning,
has been widely used in digitizing façades through point clouds.
Those point clouds contain real 3D geometry information. Laser
scanners are becoming more efficient, have a better portability,
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and are improving in accuracy (Shan and Toth, 2018). With inte-
grating a camera, the true colour value is able to be captured and
registered to those points. Therefore, point clouds are an obvious
choice to create 3D city models at a higher LoD (Biljecki et al.,
2016).

Façade modelling from dense point clouds is usually based on
boundary representation (B-Rep) that consist of vertices, edges,
and faces. The relation between the three components can be
automatically generated by triangulation where the representa-
tion of façades are triangular meshes. Albeit the mesh generation
is efficient, the solid model is usually insufficient. Afterwards
numerical optimizations are needed to mitigate noise, simplify
boundaries and so on (Haala et al., 2006). Another type of repre-
sentation is a polygon mesh that indicates the connected relation
of points. If the point correctly represent the corner of a façade
and its elements, the model becomes easy to use and edit with a
commercial software like 3ds Max. Although a lot of work has
been done for the boundary detection of openings, the bound-
ary points are detected individually. They are sensitive to the
noise and neighbouring points. Furthermore, there are partition-
ing methods that split a façade into blocks following the features
of façade elements. However, the corners of openings are usually
out of consideration.

We aim for automatically detecting the corner of openings on
façade point clouds in this work. Generally, the façade ele-
ments are following architectural rules representing rectilinear
and repetitive structures. We are taking advantage of these traits
to detect the corner points of openings. However, the point cloud
data contains certain unexpected points nearby the boundary of
openings. This is possibly caused by objects, such as window
bars or decals, curtains, plants and so on. It increases the dif-
ficulty of point cloud processing, in particular analysing points
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within their neighbourhoods. Instead of searching out individual
points of boundaries, we propose to inspect the change between
walls and openings to directly locate the border lines. As the
boundary points and lines are sought out according to the wide
strip-shape areas of the façade, the influence of discrete noise
points will be mitigated.

In this paper, we describe a method for detecting opening corners
based on a global-wide sliding window. This window performs
horizontal and vertical retrieval of the façade separately and cal-
culates the gradient of the number of points in each search area.
By statistically analysing the gradient, the area corresponding to
the change of the façade element can be located. From these ar-
eas, intersections of the façade element transitions are extracted.
Finally, by intersecting these boundaries, corners of openings are
generated.

The contributions of this paper are as follows. First, we propose a
robust algorithm to locate corner of façade openings from terres-
trial LiDAR points. The algorithm is robust to noise and outliers,
which are very common in terrestrial LiDAR data. Second, we
introduce a novel algorithm to recover façade openings from oc-
clusion areas based on global and symmetry information.

The paper is structured as follows. Requirements and challenges
of opening detection are discussed in Section 2. We introduce our
solution for detecting corners of openings by a sliding window
method in Section 3. The experimental results with mobile and
terrestrial LiDAR data are presented and analysed in Section 4.
The conclusion and future work are given in Section 5.

2. RELATED WORK

A considerable amount of work has been done on detecting open-
ings using point clouds from images (Müller et al., 2007, Cey-
lan et al., 2012) and LiDAR (Kelly et al., 2017). Our work is
based on LiDAR point clouds, including static terrestrial and mo-
bile LiDAR data. Usually there are no points in openings areas
which represent holes. This characteristic has been used in the
openings detection, such as extracting edge points by detecting
long TIN edges and corrected the shape by concave hull (Pu and
Vosselman, 2009). Additionally, the combination of α-shape and
delaunay triangulation method is used (Arikan et al., 2013). Fur-
thermore, symmetry information has been used to detect open-
ings with descriptors (Kerber et al., 2013). Moreover, a semi-
automatic reconstruction of openings is done mainly by snapping
with energy functions, symmetry information and human inter-
action (Nan et al., 2010). In this paper, we focus on detecting
corners of openings from point clouds, the modelling part is not
considered.

Cell decomposition is a typical method for automatically detect-
ing openings on a façade (Becker and Haala, 2007). It searches
the boundary points of openings depend on their borders. For in-
stance, if there is no point on the right side within a radius search
area, then this point belongs to the left edge points. Similarly,
the other edge points (right, top and bottom) can be searched out.
By using these edge points, horizontal and vertical edge lines are
estimated to partition the façade into 3D cells which are classi-
fied with a binary map afterwards. The classification facilitates
the understanding of façade grammar (Becker, 2009). However,
the initial step of searching boundary points is sensitive to noises,
which requires a façade point cloud with high quality (Zolanvari
and Laefer, 2016). Different from this method, our approach di-
rectly inspects the change of façade elements to locate the edge

lines that mitigate the influence of noise points and partly oc-
cluded areas.

An adaptive partitioning method for façade elements is proposed
that roughly segment a façade and boundary of openings by a
penalty function with RANSAC approach. Then, the similarity of
each nearby slice is measured to identify façade elements. Same
clusters are consistently spilt and rectified until the evaluation of
the result meets predefined thresholds. Each sub-divided block
is recursive partitioned to extract more façade elements (Shen et
al., 2011). The method is adaptive to many types of façade (e.g.
with balcony, with protrusion and conical). However, it is sen-
sitive to patterns (e.g. non-rectilinear, irregular repetitive, etc.)
on a façade. Although it partitioned the façade, a further esti-
mation to the angular point of façade elements is still necessary.
Later, as an extension of this method but most focus on façade el-
ements, the local lattice is used (Mesolongitis and Stamos, 2012).
The deviation of normal by each two neighbouring points is com-
puted for lattice. Then, boundary lines are roughly fit by using
Hough Transform with the grid. With a defined energy func-
tion, repetitive structures are detected and labelled (Wang et al.,
2016). However, depending on grid fitting and penalty functions,
the method needs tremendous empirical thresholds for the lattice
hypothesis and weighting parameters. In contrast, our approach
extracts the boundaries by analysing the gradient of changes of
points. These changes are displayable and therefore help to de-
termine the parameters.

Recently, a slicing method is proposed for façade and window
extraction from point clouds (Zolanvari and Laefer, 2016). The
method firstly segments the primitive of a façade by RANSAC.
It slices the segmented façade into numbers of portions depend-
ing on the width of the façade and an empirical value. Each slice
represents one cluster unless a gap breaks the cluster into two.
Then, a projection within a local coordinate system is applied
to the points in each cluster, where the endpoints of the projec-
tion line are extracted as boundary points. This method detects
openings in one direction that reduce the computation cost and
provide relatively high accuracy with less manipulate. However,
it requires sufficient density of point clouds, which is hard to be
ensured when using mobile LiDAR data. In addition, occlusions
are not under consideration in this method. Instead, the approach
we propose considers occlusion conditions in the sliding window.
Consequently, it is advisable in partly occlusive point clouds.

There are some challenges in opening detection, which we seek
to overcome in this paper:

1. Occlusion: Depending on different measurements and mea-
suring angles, the point density of the boundary of openings
is unstable. For example, when using mobile LiDAR, the
upper boundary of a window has higher point density and
reliability than that of the lower part. This is caused by a
mobile laser beam emitted from relatively 2 meters above
the ground could be occluded by windowsills where has less
return from the bottom of the window.

2. Inhomogeneous and low point density: The point density of
terrestrial LiDAR data is dependent on beam divergence, the
range to targets, and other system dependent factors. Typ-
ically, the higher the part of a façade, the lower the point
density.

3. Outliers and noise: Even extracted the primitive of a façade,
there are a certain number of non-interested points locate
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nearby openings. Such points are summarized as noise
which is hardly distinguished from the point cloud aspect.

3. PROPOSED METHODOLOGY

Our work aims at detecting corner points of openings on a façade.
The input of our process is a raw terrestrial LiDAR data, includ-
ing static and mobile laser point clouds. Mostly, the quality of
raw point clouds are inconsistent, depending on the environment
complexity and measurements. The collected points are unstruc-
tured and contain a certain degree of noise, outliers and other
influences as mentioned in Section 2. Therefore, the first and
necessary step is to analyse the raw data (i.e. Which attribution
is available? How is the distribution of points? Where is the
research area of interest? Etc.). In some of our cases, the true
colour is registered to the point cloud, but the variation of colour
representing façade elements is not sharp enough to be differen-
tiated. In addition, different buildings have diverse colours that
increase the unavailability of the RGB values. Hence, we only
use the geometry information. Others, such as colour values, are
not under consideration in our case.

3.1 Overview of the method

Our approach of detecting openings corners is based on LiDAR
point clouds of urban building façades. The facade point cloud
collected by static or mobile LiDAR contains uncertains depths.
This uncertainty will increase the difficulty for processing. For
ease of the difficulty, we clip a rough primitive of the facade from
the raw data. It is then projected to the local Y-Z coordinate plane.
The later process consists of three main steps, which are elabo-
rated on in the continuation.

1. Sliding Window Search

We propose a sliding window to inspect the façade point cloud.
The search window is defined in the shape of a wide stripe con-
taining two equal parts. While searching the whole façade by
sliding the window, the index of each part and its interior points
will be recorded. Since the point cloud in the sliding window al-
ready covers the occlusion, the analysis of global information in
the striped window can effectively reduce the influence of occlu-
sion and density inconsistency.

2. Gradient Generation and Change Detection

To detect the change between façade elements, we calculate the
gradient of change based on the number of points in the first and
second half of the sliding window. For example, if it slides from
the wall to openings where the first part has higher density than
that of the second part, the gradient is basically negative. Peaks of
the gradient values are selected, representing the position of the
change. Sometimes, outliers and noise affect the gradient value.
We mitigate these effects by adaptively counting the position sep-
arations to derive symmetry information.

3. Angular Point Intersection

After selecting the gradient peak, the corresponding sliding win-
dow can be located. As gradients are calculated through two parts
of the sliding window, we use the intersection of these two parts
to approximate the boundary between openings and the wall.
Meanwhile, angular points can intersect from the horizontal and
vertical borderlines.

3.2 Pre-processing

In the most of cases, not all the collecting points are coplanar.
The laser beam goes through windows or return from protrusions,
which leads points to attach (or with a certain level of distance)
to the primitive of a façade. These points may influence the later
process. For example, if a projection is made when there is an
angle between the point and the projecting direction, non-interest
points will be projected onto the reference plane that alters the
original geometry of the façade. Several works have been done
on automatically extracting primitive from an interested research
area (Mesolongitis and Stamos, 2012, Xiong et al., 2015, Zolan-
vari and Laefer, 2016). For ease of the issue, we clip the prim-
itive of façade points from the raw data using CloudCompare
(http://www.cloudcompare.org). It is then projected to the local
Y-Z coordinate plane by using Hessian normal form (Rusu and
Cousins, 2011). The input point cloud is unstructured, even it has
been projected to a 2D plane. For detecting features, we structure
façade points with the octree data structure (Meagher, 1982).

3.3 Sliding Window Search

Normally, façade elements are aligned following architectural
rules. For instance, a slab is located between two rows or columns
of openings when looking from the outside of a building. In an-
other word, starting from an opening (e.g. a window), the area
above belongs to a wall. Such rule is applicable in general stan-
dard buildings. To exploit this rule in the structured point cloud,
we develop a sliding window method to inspect the façade hori-
zontally from the bottom to the top and vertically from the left to
the right (see Figure 1).

Figure 1. Sliding Window Search. Red frames show the sliding
window search in the horizontal direction. The yellow frame rep-
resents the vertical search window. Note that, for the sake of a
clear visual representation, the size of the sliding window is en-
larged in the figure.

Taking the horizontal direction as an example, we first set up an
initial window (W 1

hor as shown in Figure 1). The size of the slid-
ing window depends on its depth, width and height. Since the
window search is performed on the projected two-dimensional
plane, in order to reduce the computational cost, we set the depth
to 0 cm. The height is determined according to the pattern of
the façade. As the prior knowledge of the architecture aspect,
the slab between each floor is around 50 cm. Thus we assume
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that a striped window with the height of 40 cm (inner parts of
the sliding window are equally 20 cm) is suitable to inspect the
change of façade structures. In order to globally analyse the
façade point cloud to reduce the noise effect, the width of the
sliding window should be sufficient to cover the width of the
façade data Widthf = |Ymax − Ymin|. To ensure all points
can be counted, we slightly enlarge the width of the sliding win-
dow. The increase is half the height of the window. Therefore,
the width of the horizontal sliding window (Widthw) is defined
as Widthw = Widthf + 1

2
Heightw

After constructing the initial frame of the window, we start to
define the sliding of the window. There are four key parame-
ters need to be defined, including the starting and ending po-
sition, as well as the direction and distance of the slide. The
position of the lower left corner of the window is marked as
the starting position (Xhor, Yhor, Zhor)start. In order to cover
the entire area, the window based on this initial position needs
to include the lowest and most marginal point (X,Y, Z)min in
the façade data. Therefore, we add a tolerance to this start-
ing position, which is express as (Xhor, Yhor, Zhor)start =
(X,Y, Z)min − 1

4
(Depth,Height,Heigh)w. Then, we give

the direction of movement of the horizontal sliding window to
the Z axis. It slides at half the height of the window each time
(distmove = 1

2
Heightw). When it moves once, the initial po-

sition is updated according to the moving distance. The index of
each point in the upper and lower parts of the window is stored
for subsequent feature extraction and global information analy-
sis. After recording all the information, the window will auto-
matically slide along the direction and distance until it reaches
the highest point (Zmax) of the façade data.

Similarly, for vertical search, the depth is still set to 0 cm. We
set the width of the vertical sliding window to 40 cm. As half the
width of the window, the sliding distance is 20 cm. The height of
the vertical sliding window is defined asHeightw = Heightf +
1
2
Widthw. Assigning Y axis as the moving path, the vertical

sliding window inspects the façade starting at the same location
as the horizontal search until it traverses completely the façade.

3.4 Gradient Generation and Change Detection

Feature extractions from point clouds often rely on the relation-
ship between a single point and its neighbourhood. This is sen-
sitive to the noise surrounding the search point. Our proposed
solution is to use a change of the number of points (see equa-
tion 1) to establish a relationship to the overall area in the sliding
window. Features, i.e. the change of façade elements, can be ex-
tracted by these gradient values and the corresponding window
positions.

Following the mentioned architectural rule, it is assumed that the
number of points within the sliding window will be reasonably
large when it moves to the slab or other place that belongs to the
wall. On the other hand, when the area inside the sliding window
belongs to openings where basically no representing points, the
amount of point will be relatively small. We compare the points
within the upper and lower parts (left and right in the vertical
direction) of the sliding window . If the sliding window arrives
at the boundary between slab and openings, the number of points
in the two parts of the window will change greatly. Therefore,
based on the number of points acquired in the previous search,
we extract features by calculating the gradient of the number of
points in the sliding window.

However, most façade point clouds have inhomogeneous density.
For example, due to the scanning distance and occlusions, the
density of points in the upper part of the façade is less than that
in the lower part. This challenge will increase the uncertainty
of the range of gradient changes. To alleviate this problem, we
assume that the property of points located in the current sliding
window is similar, such as they have approximate point distances.
Therefore, we can effectively compress the gradient values to the
0 to 1 interval by dividing the difference between the points on
the upper and lower parts of the sliding window by the number of
points, which is express as

G =
Ni+1 − Ni

Ni+1 + Ni
→

{
1 Ni � Ni+1

0 Ni ≈ Ni+1

−1 Ni � Ni+1

(1)

Where Ni means the number of points in the upper (left) part
of the sliding window; Ni+1 is the number of points in the lower
(right) part. These two numbers are positive. When G approaches
to 1 that means the number of points in the latter area is much
larger than the former one. Conversely, a negative value means
that there are more points in the first half. When G approaches 0,
it means that the points of the two parts of the sliding window are
similar.

The sign of the gradient G indicates the variation trend of the
façade elements. Since the number of points must be non-
negative, the sign of the gradient depends on the difference be-
tween the first and second parts of the sliding window. When
the search window slides from wall to openings, the gradient of
the number of points will have a change from positive to neg-
ative. However, this process is subject to a certain degree of
noise, which caused by the points from non-interest objects. For
analysing the change position and noise influences, we plot the
gradient values as shown in Figure 2.
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Figure 2. Statistical analysis of gradients G in sliding windows

By the assumption, the peaks of the gradient in the statistic figure
generally represent the change between openings and wall. Such
peak values can be extracted by two filters. T1

peak restricts the
positive values (e.g. a window to a slab) that values below this
threshold will be filtered out. In contrast, the gradients staying
over the constraint will be treated as peak values. Similarly, we
keep values which are less than the T2

peak constraint (e.g. a wall
to an opening). Each change should perform a sharp rising or
down trend following a regular pattern.
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However, due to the low point density and other effects, the per-
formance of gradients becomes unstable in the higher part of the
façade. To reduce the impact, we pre-defined a stable section
to extract symmetric information to constrain the overall region.
First, we calculate the interval between all extracted peaks and
sort them in descending order. Then, the mean Īpeak and me-
dian Ĩpeak of the peaks in the given stable section are calculated.
By comparing these two numbers, the smaller one is taken as the
symmetric information representing the reference interval in Fig-
ure 2. The definition is express as

Iref := min(̃Ipeak, Īpeak) (2)

For each neighbouring peaks, the separation distance should be
larger than the reference interval Iref (see equation 2). By this
symmetry information, the pseudo peaks appearing in the ex-
tracted peaks can be filtered out. Thus positions of the sliding
window representing the change of façade elements are detected,
which represented by the remaining peaks.

3.5 Angular Point Intersection

The final step in the approach is to intersect the corners of open-
ings by extracting the horizontal and vertical intersection of the
wall and the openings. From the position of sliding window given
in the previous step, we can locate the boundary between the wall
and openings. Since each gradient value is obtained from the
points corresponding to the upper and lower parts of the sliding
window, in order to obtain robust borderlines, we use the inter-
section line of the two parts to approximate the boundary between
different façade elements.

Empirically, the bottom and the top of the façade are not in the
stable section, due to occlusions and noise effects. It will cause
misleading boundaries if we extract them following the search or-
der of the sliding window. Thereby, we assign a reference peak
position. The extraction of horizontal (vertical) borderlines is ex-
ecuted from the referenced position to the bottom (left) and to the
top (right) separately under the constraint of the derived reference
interval Iref . Finally, the corners of openings can be detected by
intersecting these horizontal and vertical boundary lines.

4. EXPERIMENTS

The approach has been tested on static terrestrial LiDAR data
(Figure 3) and mobile LiDAR point clouds (Figure 4, 5). As
mentioned in Section 3, we set the height of the horizontal sliding
window and the width of that in vertical direction to 40 cm for all
the cases as shown in this paper. The reference position is pre-
defined at 40 which can be tweaked depends on different cases.
Empirically, we find that the thresholds of peak selection set to
T2

peak < −0.15 and T1
peak > 0.15 are adaptable to our cases in

static and mobile terrestrial point clouds.

Figure 3 shows the sliding window method for corners detection
from a static terrestrial LiDAR point cloud and the gradient in
the horizontal sliding window. The corners of openings have
been generally detected with the settings. Since we projected the
3D point cloud onto a 2D plane, the points with certain depth
which not belong to this plane are also counted after projection.
It is sensitive to irregular structures when using sliding window
method. An example is shown in Figure 3 (left) where the top
of the façade has a modern design, the gap within that area also
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Figure 3. Result of detecting opening corners by the sliding win-
dow method from the static terrestrial LiDAR data. The height
and width of the façade point cloud (left) are 50.00 m and 16.81
m respectively. The plot on the right shows the gradient value in
the horizontal sliding window.

Figure 4. Recovery of openings within low point density (upper
right) and noise areas (low right). The height and width of the
façade point cloud (left) from mobile LiDAR are 52.52 m and
21.61 m respectively.

has a sharp gradient in the sliding window. Therefore, an unex-
pected vertical line is extracted. Focusing on openings detection,
this case can be adjusted with pre-processing or post-processing
by limiting the range of intersection.

We also experiment the sliding window method on mobile Li-
DAR data. Although the lower part of the façade point cloud from
mobile LiDAR has higher point density, the area has more possi-
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Figure 5. Window detection by the sliding window method from
the mobile LiDAR data.The height and width of the façade point
cloud are 17.66 m and 10.97 m respectively. The plot of vertical
gradient values is on the top of the figure and that of the horizontal
gradients is placed on the right-hand side.

bility to contain non-interested points. As shown in Figure 4 (low
right), an opening is occluded that increased noise points occu-
pied nearly a half of the open area irregularly. Our method anal-
ysed the stripe-wide information and detected the corner points
within that area. Additionally, due to the character of mobile laser
scanning, the upper site of the façade lacks information. The al-
gorithm is able to estimate the boundary of openings in this site
based on the existing information from the lower part. For pro-
viding a robust detection, the estimation contains symmetry in-
formation, that is, the reference spacing is used to constrain the
selection of peaks.

Figure 5 is another sample of mobile LiDAR data in our study.
Peaks in the plots represent the sharp variations of point density
between inner parts of the sliding window. Based on the global
and symmetry information, the sliding window method refined
the façade structure of the right lower part where has a certain
level of occlusions. Comparing to the statistical figure of static
terrestrial laser scanning, that of the mobile LiDAR has less dis-
tinct identity of patterns. In such case, our method is still valid.

However, there are still some limitations should be improved in
our method. Since the sliding window approach is mainly based
on the gradient of the number of points in globally wide win-
dows, it is subject to abnormally aligned structures. If the open-
ings are not regularly arranged, there may increase many lines
(or no lines) depends on the gradient and intersect unexpected
points. Although our method can recover corners of openings
within partly noise and missing data areas, it is ineffective in
those mostly or fully occluded areas (e.g. the area with no points)
where has no sharp change of gradients. Because of the inherent
nature of the method, closed doors and windows with blinds are
hardly detected when full of points are on a flat surface.

5. CONCLUSIONS

We propose an approach to detect corner points of repetitive
openings from terrestrial LiDAR point clouds. The approach
searches and analyses the façade with a globally wide sliding
window that mitigates the noise effect in horizontal and vertical
directions based on octree structure. Through computed gradients
in each sliding window, we apply statistical analysis and derive
the symmetry information to inspect changes of façade elements.
The approach detects corners of openings and recovers corner
points in a partly missing data area. However, mostly occluded
areas and not aligned openings are the limitations.

In the future we plan to improve our approach to be adaptive to
abnormally arranged façade elements. To improve the accuracy
of the detection, the depth information and integration of image
features will be considered. The detected corner points will be
used to classify façade structures and serve as an initial input
for feature extraction from images and semantic labelling by ma-
chine learning.
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