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ABSTRACT: 

 

Crescent sand dunes called barchans are the fastest moving sand dunes in the desert, causing disturbance for infrastructure and 

threatening human settlements. Their study is of great interest for urban planners and geologists interested in desertification 

(Hugenholtz et al., 2012). In order to study them at a large scale, the use of remote sensing is necessary. Indeed, barchans can be part 

of barchan fields which can be composed of thousands of dunes (Elbelrhiti et al.2008). Our region of interest is located in the south 

of Morocco, near the city of Laayoune, where barchans are stretching over a 400 km corridor of sand dunes.  

We used image processing techniques based on machine learning approaches to detect both the location and the outlines of barchan 

dunes. The process we developed combined two main parts: The first one consists of the detection of crescent shaped dunes in 

satellite images using a supervised learning method and the second one is the mapping of barchans contours (windward, brink and 

leeward) defining their 2D pattern. 

For the detection, we started by image enhancement techniques using contrast adjustment by histogram equalization along with noise 

reduction filters. We then used a supervised learning method: We annotated the samples and trained a hierarchical cascade classifier 

that we tested with both Haar and LBP features (Viola et Jones, 2001; Liao et al., 2007). Then, we merged positive bounding boxes 

exceeding a defined overlapping ratio. The positive examples were then qualified to the second part of our approach, where the exact 

contours were mapped using an image processing algorithm: We trained an ASM (Active Shape Model) (Cootes et al., 1995) to 

recognize the contours of barchans. We started by selecting a sample with 100 barchan dunes with 30 landmarks (10 landmarks for 

each one of the 3 outlines). We then aligned the shapes using Procrustes analysis, before proceeding to reduce the dimensionality 

using PCA. Finally, we tested different descriptors for the profiles matching: HOG features were used to construct a multivariate 

Gaussian model, and then SURF descriptors were fed an SVM. The result was a recursive model that successfully mapped the 

contours of barchans dunes. 

We experimented with IKONOS high resolution satellite images. The use of IKONOS high resolution satellite images proved useful 

not only to have a good accuracy, but also allowed to map the contours of barchans sand dunes with a high precision. Overall, the 

execution time of the combined methods was very satisfying. 

 

 

 

1. INTRODUCTION 

1.1 Sand dunes remote sensing 

Remote sensing has been used by earth science scientists to study 

Aeolian sand dunes. It started from the 70s (Breed and Grow, 1979), 

where scientists showed the existence of sand dunes on Mars (Cutts 

and Smith,1973) and Venus (Florensky et al.,1977) and started 

studying the organization of groups of sand dunes. The seminal work 

of (McKee, 1979) relied on RS for the taxonomy and the mapping of 

dunes. It allowed exploring the influence of controlling parameters 

such as the wind patterns, the type of vegetation and the 

availability of sand on the terrain (Wasson and Hyde, 1983). 

While studies in the 80s focused on individual dunes, the 

important progress of computer science that took place in the 

90s induced the interest of scientists into the understanding of 

the reflectance of dune surfaces (Blumberg, 1998). In the 2000s, 

more advances were made in the quantitative aspects of dunes 

morphology and dynamics (Vermeesch and Drake, 2008, 

Bishop 2010). The improvements of Remote Sensing spatial 

and spectral resolution also paved the way for new applications, 

such as the high resolution (LiDAR) used by (Wolfe and 
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Hugenholtz, 2009) to create a digital elevation model for identifying 

parabolic barchans dunes in Canada.  Or the use of (ASTER) 

radiometric data used by (Scheidt et al. 2010) to create a mapping for 

the soil moisture in White Sands Dune field in New Mexico, USA. 

Also, the (HiRISE) camera on board of the Mars Reconnaissance 

Orbiter allowed more advanced researches on dunes morphology 

(Hansen et al., 2011, Azzaoui et al, 2016). The availability of 

geospatial datasets, from Corona, Landsat, MODIS, ASTER, HiRISE, 

MOC, MRO CTX, SRTM, ASTER GDEM, HiRISE DTM sometimes 

free, allowed more research to be conducted on the dynamics of 

barchans, which are usually located in remote areas (Sahara Desert, 

Namib Desert) or inaccessible areas, such as other planetary systems 

(Mars, Venus, Titan). The research in the latest years has been 

focusing on three main branches: the understanding of the activity of 

dunes, the description of dune patterns and hierarchies, and the 

discovery of extra-terrestrial dunes. 

The dunes can be characterized by their potential of transporting 

sand. In fact, they form a continuum spanning from dunes that we can 

characterize as stabilized (do not show any change in their surface) 

and dunes that we can characterize as active (showing a loss or a gain 

of sand supply, which can be translated as an erosion or a deposition 

of sand). For instance, the ‘star’ dunes tend to accumulate as they are 

formed when there is a multi-directional wind with an important 

variability, while ‘seif’ dunes tend to form and extend under 

bidirectional winds. Conversely, ‘barchan’ dunes tend to migrate 

(Tsoar, 2001) as they are subject to unidirectional winds. Therefore, 

scientists emphasize the distinction between mobility and activity of 

sand dunes (Bullard et al. 1997), as dunes can be active without being 

necessary mobile. Also, dunes behaviour is described as depending 

on three interdependent factors: how much sand is available, how 

easy can it be moved by the wind, and what is the wind potential 

when moving it. Advances in remote sensing allowed scientists to 

track more effectively the quantitative morphodynamical changes of 

dunes activities. As a matter of fact, some scientists support the use of 

dunes systems as an indicator of climate change (Berger and Iams, 

1996). Although dependent on climatic processes, other scientists 

showed that dunes systems are a complex non-linear physical system 

where lags can occur (Tsoar, 2005), which makes it difficult to use 

their activity as an indicator of climate change. Moreover, factors 

such as the vegetation, which is a primary impediment for any 

Aeolian sand transport (Buckley, 1987; Okin, 2008), can create 

sometimes a positive, and sometimes a negative feedback for the 

evolution of dunes activity, thus, adding more complexity to the 

system. Furthermore, some scientists consider it a better approach to 

study dunes as a biologic and a geomorphologic process (Hugenholtz 

and Wolfe, 2005). 

 

 

1.2 Measuring sand dunes activity 

Remote sensing has been used to measure the activity of dunes 

through three different means of evaluation: investigating what are 

the topographic changes, how much sand is available, and how does 

the dune shape changes.  

Starting with topography, the use of shading can help evaluating the 

slope of bare sand dunes (Levin et al. 2004). Also, 3D models are 

suitable: The release of DEMs such as ASTER GDEM allowed more 

possibilities. As an example, (Hugenholtz and Barchyn 2010) 

proposed to calculate the EST (Equivalent Sand Thickness), which is 

the difference between the surface elevation and the base level 

elevation by smoothing to distinguish several layers of data. The 

LiDAR technology was also used to estimate topography of sand 

dunes (Reitz et al. 2010). The main advantage of topography is that it 

facilitates the computational simulation of fluid dynamics of wind 

(Jackson et al., 2011), which is the main source of energy that 

displaces the sand particles in arid and semi-arid regions. 

Regarding the estimation of the availability of sand, historical 

data (including airborne imagery or maps) can be equally; if not 

more important than high resolution data as the temporal scale 

at which evolves the sand supply is determinant. With the 

increase of GIS software usage in the 90s, many hardcopies 

were digitized and the image parameters were corrected to allow 

reliable spatial measurements. (Anthonsen et al., 1996). One of 

the main challenges is the distinction between the open sand, 

the vegetation in the dunes, and the crust. In aerial photographs, 

it is relatively easy using contrast of brightness. With 

multispectral imagery, more detailed information was targeted 

such as the vegetation species and density, which can be 

influential for the sand activity. Near infrared can be used to 

distinguish vegetation types (Pinker and Karnieli 1995). Also, 

multispectral HRSI images allowed scientists to identify 

biological soil crust (Schatz et al., 2006). Biological soil crust 

can be made by many microphytes such as lichens, algae or 

bacteria which can reduce the sand available to be moved by 

wind (Tsoar and Karnieli, 1996). 

For the dune shape change, it is one of the main indicators of 

the sand movement, though the quantitative models cannot be 

deducted straightforwardly. The majority of studies concerned 

with dunes shapes compare the ‘nose to nose’ distance between 

two temporal baseline images (Bailey and Bristow, 2004). But 

other indicators were used as well such as representing the 

dunes displacement with vectors (Levin et al., 2009, Jimenez et 

al., 1999), which is not always objective as it is difficult to 

determine the exact starting and ending points of sand dunes, 

and dunes don’t have an invariable shape. Other researchers 

also used the area of the dune to produce better estimations 

(Levin and Ben-Dor, 2004). Besides, there are other approaches 

which fit polylines to each dune’s ridges, then base their 

displacement calculation on the nose point and the two rear 

points (Bailey and Bristow, 2004). Other approaches generate 

the velocity field of dunes movement using image processing 

techniques (Necsoiu et al., 2009). Finally, many researches on 

the subject of the evolution of dunes shapes based their work on 

laboratory models (Durán et al., 2005; Hersen, 2005; Katsuki et 

al., 2011), which produces accurate and mathematically elegant 

models. However, they lacked field observations to validate 

them. Fortunately, the development of remote sensing 

approaches provided a way for experimental scientists to 

validate their mathematical models with an approximation of 

the field reality. 

 

1.4 Structure of dunes  

Allometric measures revealed linear correlation between dunes 

width and height (Andreotti et al., 2002). Also, the ratio 

between dunes width and the horn width is an indicator of 

whether the dunes are receiving more sand than they are losing 

through the horns (Hersen et al., 2004), or the opposite. 

Collectively, dunes organized in a complex field which can 

display specific patterns. Statistical approaches were used to 

quantify such patterns, for example the frequency and 

wavelength for the case of linear dunes (Bullard et al. 1995). 

Also, remote sensing was used to monitor the density 

modification (Al-Dabi et al. 1997). Simple models were used, 

such as using lines connecting dune crests to outline dunes 

spacing and orientation, and marking dunes breaking the pattern 

(Ewing et al. 2006). Other scientists were interested in dunes 

collision and dune to dune interaction (Ewing et al. 2010). 

Randomness in a sand dune field was also studied using nearest 

neighbor analysis (Wilkins and Ford 2007). 
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1.5 Dunes in other planetary systems 

Many investigators worked on mapping dunes on Mars or Venus 

(Silvestro et al., 2010; Bourke et al., 2008; Ewing et al., 2010), but 

also on understanding their interaction with the wind. (Hayward et al. 

2007) created a geospatial database with the centroids of dunes and 

the orientation of the slip faces, which were used as indicators of the 

prevailing wind direction. It is however difficult to confirm that the 

orientation is compatible with the present surface wind, as there are 

cases where morphological features indicate the past wind (Wolfe et 

al., 2004). Other studies based on remote sensing supposed that some 

shrinking dunes found in Mars are suggesting the existence of active 

saltation processes (Bourke et al. 2008). However, only digital terrain 

Models (DTM) could confirm such hypothesis. 

 

1.6 Barchans dunes research objectives 

As shown in the former chapter, many researchers centred their 

attention on understanding different sand dunes morphologies and 

dynamics from different perspectives.  

In our research, we focus on barchans dunes, which are propagating 

crescent-shaped dunes that form under limited supply of sand, in 

roughly unidirectional winds (or current flow) and un-vegetated areas 

on firm, coherent basement (Elbelrhiti and Hargitai 2015). These 

factors made of barchans dunes, the fastest type of sand dunes, and as 

a result, they became a serious threat to human activities, mainly in 

arid or semi-arid areas, since they are continuously covering the 

roads, which not only raises the number of road accidents, but also 

isolates more such regions, and consequently limits their economic 

development. Moreover, the sand movement directly impacts exposed 

cities and villages, as it covers the local farm lands, and even houses, 

creating social tensions, and forcing the inhabitants to migrate. 

Therefore, decision makers, urban planners, and citizens need to be 

provided with useful and reliable information, to devise strategies to 

counter the progression of barchans dunes, mitigate their action, 

prevent their consequences, which requires to monitor their 

hazardous ramping. Our region of interest is located nearby Tarfaya 

city in the south of Morocco, which suffers from barchans dunes 

progression (Hersen 2005). Along with desertification concerns, some 

researchers also tend to study dunes systems as an indicator of climate 

change, or at least find correlations with climatic transformations. 

Finally, space explorers and geologists who try to understand 

geological systems of extra-terrestrial planetary landforms (Mars, 

Venus or Titan) are also interested by works related to sand dunes 

systems as they provide an insight towards a better grasp of the 

complexity of such environments. 

 

1.7 Technical approaches for barchans detection 

There are several problematics that arise when studying barchans 

dunes in high resolution satellite images. One of them is the 

vegetation which can be a discriminative attribute as we may use 

textural feature to discriminate bare dunes with the vegetated 

surroundings. However, when dunes have trailing sand, the textural 

attributes cannot reliably differentiate sand dunes with their 

surroundings. Another issue is the solar illumination which can result 

in an important effect on topography due to shadings. These artifacts 

can be exploited for the detection of barchans sand dunes as is the 

case in this work. Commensurability is another consideration for 

multi-temporal research works, as it is ensured by measuring a 

parameter in two or more different periods or seasons (especially 

regarding vegetation cover (Til et al. 2004). The final impediment of 

remote sensing is about matching field measurements with RS data. 

As an example (Nield and Baas, 2008) used growth curves to estimate 

the response of vegetation to topographical changes. 

 

2. MATERIAL AND METHODS 

2.1 Material  

Our area of interest is located in the south of Morocco, in the 

Sahara Desert, between the cities of Tarfaya and Laayoune. It is 

worth noted that this region is distinguished by one of the 

longest barchans dunes corridors on Earth, spanning across 400 

km, indicated in yellow in [Figure 1], courtesy of Sentinel 

Copernicus programme.  

 

 
 

Figure 1: The study area location. 

Yellow: Barchans corridor. Red box: Area of interest 

 

Our goal is the segmentation of barchans dunes contours. 

Therefore, we used a high resolution satellite image in order to 

get an accurate outline of barchans of different sizes. The 

satellite image is from IKONOS, which includes include a 3.2m 

multispectral, and 0.82m panchromatic spatial resolution. It 

shows a field containing hundreds of barchans dunes. The 

following table contains the details about the image we used 

[Table.1].  

 

Satellite IKONOS 

Location South of Morocco, Sahara Desert 

Coordinates Between 27°26’8.6621”N, 

13°08’5.2628”W and 

 27°41’1.0350”N, 13°22’0720”W 

Scale 0.82m panchromatic 

Date July 23th, 2003 

Area ~13 km² 

 

Table 1. Image and location details  
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2.2 Methods 

2.2.1 Process of detection, segmentation and morphology 

measurement: The approach we use is divided in three major stages: 

Detection of barchans dune, which takes in input a high resolution 

satellite image, runs computer vision and image processing 

algorithms and techniques, and produces as an output a set of 

barchans dunes candidates, which are surrounded by bounding boxes. 

The second stage is collecting the dunes candidates, and learning an 

active shape model which matches the contours of barchans (the 

windward, brink and leeward contours). The output is a collection of 

three splines, which constitutes a mathematical model for the 2D 

shape of a barchans dune. The third stage is a set of geometrical rules 

that we developed and applied on this simple model to generate a set 

of morphometric measures such as dunes width and horn width for 

which we explore basic statistical correlations. 

 

2.2.2 Image enhancement and pre-processing: Multispectral 

images were scaled to the panchromatic image size, and then 

combined in an RGB manner, before being converted to a single 

channel grey scale image. Then, the resulting image was enhanced by 

applying first histogram equalization, then successively the Weiner 

filter and median filter, in order to reduce the noisiness.  

 

2.2.3 Dataset preparation: As we use a machine learning 

approach and more specifically a supervised learning method, we 

started by annotating a learning dataset, through a program we 

developed specifically to map barchans dunes contours using spline 

curves. Once the annotation finished, we generated two sets of 65 

positive and 65 negative images each, showing respectively barchans 

dunes and the surrounding environment (crust, vegetation, scattered 

sand or roads) [Figure 2]. 

 

2.2.4 Cascade classifier: To detect barchans dunes examples, we 

used a hierarchical cascade classifier (Viola et Jones, 2001; Liao et 

al., 2007), which we tested with two different descriptors: Haar and 

LBP. The cascade contained five stages with a false alarm rate of 5%. 

The cascade classifier used is based on a set of weak classifiers 

boosted to produce a vote on each stage of the hierarchy. 

Individually, a weak classifier is barely better than a coin flip, but 

when boosted they are a reliable model for decision-making. 

 

2.2.5 Candidate fusion: After the execution of the learned model, 

we obtained a set of bounding boxes surrounding dunes candidates. 

The overlapping bounding boxes were merged into the maximum of 

their x,y coordinates. Moreover, the bounding box was enlarged by 

20% to prepare for the next stage, which will require a buffer zone 

around the dunes candidates to operate. 

 

2.2.6 Shapes alignment: The alignment of shapes is the first step 

in the second stage which is about training an ASM (Active shape 

Model) for segmenting barchans dunes contours. As each dune is 

identified with 30 landmarks: Each 10 landmarks correspond to a 

contour, which can be whether windward, brink or leeward. As 

barchans dunes have different scales and sizes, it is necessary to 

normalize their shapes. Therefore, we use a Procrustes Analysis, 

which is defined by an algorithm for which the goal is to minimize 

the distance of each shape from the mean of all shapes. It results into 

the minimization of scale, rotation and translation differences 

between shapes, using among others, the following transformation: 

 

 

 

Figure 2: Dataset sample. 

a: Positive examples of barchans dunes 

b: Negative examples of surrounding terrain 

 

2.2.7 Dimensionality reduction: As the model contains 30 

landmarks, each dune is represented as 30 dimensional vector. 

We used a dimensionality reduction method PCA (Principal 

Component Analysis) to lower the number of parameters 

controlling the shape of a barchans dune. The reduced model 

was used to limit the variation of barchans shapes.  

 

2.2.8 Profiles extraction: For each one of the 30 landmarks, 

a normal line was drawn, perpendicular to the corresponding 

outline of the barchans dune. Then from this profile, intensity 

derivatives were calculated. The combination of this intensity 

profiles allowed generating a multivariate Gaussian distribution 

model. This approach could be also slightly modified by using 

local feature descriptors such as SURF on and around each 

landmark, then use an SVM to learn to discriminate between the 

SURF points corresponding to the dune contour and the SURF 

points which are not falling in the contour of a barchans dune. 
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2.2.9 Contours fitting: In this step, we combine the former steps 

to detect the contour of a barchans dune. It starts by projecting the 

mean shape which is the result of shapes alignment and Procrustes 

analysis into the testing example. Then, we draw the normal of each 

landmark and extract the derivatives of intensity. Next, we moved 

each landmark independently along its normal, by minimizing the 

Mahalanobis distance between the model mean, and the possible 

other shapes. 

 
Subsequently, a minimum is found, but to keep it on check an 

additional step is performed, which calls upon PCA learned model, 

and verifies that the shape found after Mahalanobis distance 

minimization is within predetermined boundaries of variance from the 

PCA mean model. 

 

2.2.10 Allometric features definition: We defined a set of shape 

parameters summarized in [Figure 3] 
 

 

 
Figure 3: 2D barchans dune allometric features 

 

 

 

 

 

 

 

 

 

 

 

The barchans dunes were modeled by 3 spline curves. We 

calculated the centroids each of the three splines composing a 

barchan, and then we considered the direction of a barchan as 

aligned with the axis composed by windward spline centroid 

and the average of leeward and brink spline centroids. This 

orientation does not correspond necessary to the wind direction, 

and can only be indicative of the prevailing wind direction in 

specific cases. The width of a barchan was obtained by 

measuring the length of the segment fulfilling the following 

condition: It had to be the intersection between the dune 

direction orthogonal line passing by the crest and the windward 

spline. The barchan horns distance was measured between its 

first horn centroid and its second horn centroid. A horn centroid 

was simply defined as the barycenter of the corresponding ends 

of windward, brink and leeward splines. The horn width is the 

sum of the right and left horns widths. It was calculated by 

drawing a parallel line to the barchan direction and passing 

through the barycenter of leeward and brink splines ends. The 

second line was parallel to the barchan direction and passing 

through the first intersection with the windward spline, coming 

from outside towards the dune. The distance between those two 

lines approximated the horn width. 

 

3. RESULTS 

3.1 Dataset primary analysis 

Following the primary collection of allometric results, we 

proceeded to a quantitative analysis summarized in [Table 2]: 

 

 
Mean 

Standard 

deviation 

Dunes direction (degree) 24.4917 8.8761 

Dunes area (m²) 9611.5 7218.4 

Dunes width (m) 96.7603 40.5764 

Dunes width, horns-width ratio 2.9022 1.0217 

Dunes spatial density(dune/km²) 11.7371 

Dunes covered area  0.1127 % 

 

Table 2. Statistical analysis of dunes features 

 

Dune direction is not necessarily an indication the exact 

direction of movement of a barchans dune. However, it is 

related to prevailing wind direction, especially when we 

consider the mean dune direction. The dune area is the footprint 

of a dune and is calculated as the integral between dunes 

contours. Barchans mean width in our area of interest was 96m, 

with a standard deviation of 40m which classified them as 

medium to small barchans. The received sand flux is 

proportional to the barchans width, and the escaped sand flux is 

proportional to the width of its horns, therefore, the ration of 

these two parameters is an indicator of the shrinking or 

fattening of a barchans sand dune, thus providing an insight into 

its dynamics. The dune special density is a simple dune 

counting per square kilometre. The dunes covered area is sum 

of dunes area divided by the size of all the area of study. 

 

3.2 Cascade classifier testing 

The cascade classifier was used to detect barchans dunes of 

different scales. The Haar descriptor returned excellent 

detection results as it took advantage of the reflection of sun 

over the characteristic shape of barchans [Figure 4] 
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Figure 4: Example of cascade classifier detection 

 

3.3 Active shape model fitting: 

 
Figure 5: a: Contours before alignment 

b: Contours after Procrustes alignment 

 

The shapes alignment was the first step, followed by applying 

PCA for dimensionality reduction [Table 3] 

 

 
Eigenvalues 

Explained 

percentage 

1 0.01455 32.56% 

2 0.0088493 52.36% 

3 0.0049935 63.54% 

4 0.0038906 72.25% 

5 0.0031457 79.29% 

6 0.0018443 83.41% 

7 0.0016682 87.15% 

8 0.0012165 89.87% 

 

Table 3: PCA Results 

 

The modes of each barchans were constrained with a variance 

factor, to maintain the shape of dunes within a specific range 

[Figure 6], to insure a reasonable convergence [Figure 7]. 

 

 

Figure 6: Example of 2 different modes with their mean in the 

central column, and adjacent, their respective variations  

 

 
Figure 7: Left: Landmarks normal. Right: ASM convergence 

 

3.4 Correlation of allometric measures 

After few adjustments, we used our geometric model to collect 

allometric measures from barchans. Then, we explored the 

correlations between dunes width and height measurements 

[Figure 8], which is shown in the following equation: 
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Figure 8: Dunes length as function of dunes width 

 

4. CONCLUSION 

We proposed a process divided in three consecutive stages for the 

detection, segmentation and extraction of measures of barchans 

dunes. Our object based approach relied on machine learning and 

image processing. Indeed, the combination of a hierarchical detection 

algorithm, an active shape model for the segmentation of contours 

and a set of geometrical tools to extract dunes measures proves very 

useful, as we could found correlation between dunes features.  

The method proposed can allow scientists to gather a large amount of 

data from thousands of dune automatically, using remote sensing, 

which can certainly provide a better insight into barchans dunes 

dynamics, for geologists, urban planners and decision makers who 

face desertification problems. Future works could extend the spatial 

and temporal scale. 
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