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Abstract: 

Geological mapping in desert, mountainous or densely vegetated areas are sometimes faced with many constraints. Recently several 

remote sensing methods are used on ASTER or LANDSAT imagery for making that task easier. The aim of this paper is to evaluate 

the applicability of some of these methods on Sentinel-2A images. The study, therefore, focuses on a lithological classification 

using these multispectral images in the south of the Tafilalet basin. To achieve this goal, two L1C level images were used. 

Decorelation stretch combined with the optimal index factor (OIF) and Minimum Noise Fraction (MNF) were the main 

improvements used for RGB combination images. The classifiers Spectral Angle Mapper (SAM) and the Maximum Likelihood 

classifier (MLC) have been evaluated for a most accurate classification to be used for our lithofacies mapping. The latest drawn 

geological maps and RGB images of false colour combinations were used to select regions of interest (ROI) as the endmembers to 

use for these classifiers. Obtained results showed a clear discrimination of the different lithological units of the study area. 

Classifications evaluation showed that the Maximum likelihood classifier is more accurate with an overall accuracy of 76% and a 

Kappa coefficient is 0.74. Finally, this study has shown the importance of the use of sentinel-2 multispectral images in geological 

mapping and has shown that the high spectral resolution of the VNIR and SWIR bands creates a synergy with the high spatial 

resolution for optimal lithological mapping. 

__________________ 
* Corresponding author

1. INTRODUCTION

The field geological studies have always been very important 

for any resource exploration (mineral, hydro-geological, 

Petroleum industry or civil engineering domains). The good 

basic geological mapping is an absolute necessity for having 

an optimal exploitation of these resources. The geological 

investigations in desert areas, densely vegetated or areas with 

difficult access, has always been a very hard task. Sometimes, 

improper extrapolation of the interpretation of geological 

features in the field, like structures and lithological boundaries, 

produces inaccurate geological maps. 

Since the seventies (Bishop et al., 2018a), satellite imagery, 

with various missions and instruments, has allowed geological 

mapping to take a big step forward with the use of remotely 

sensed data. Geological remote sensing that debuted 

recently(Gregory, 1979)with the use of low resolution images 

of landsat1; has evolved in parallel with the progression of the 

satellite programs that followed; like Landsat2 to Landsat8; 

ASTER and others Multi or hyperspectral satellites, for more 

details see  ((“Satellite Missions Directory - Earth Observation 

Missions - eoPortal,” n.d.).  

Over the past three decades, the use of multispectral data has 

increasingly permitted determining the nature of minerals and 

rocks. Thus, the development of new methodologies by these 

multispectral images has made geological mapping even 

easier. In these images, each object has a spectral signature that 

is a specific response to the radiation to which it is subjected. 

For rocks, these spectra vary with several factors; After 

(Abdelmalik and Abd-Allah, 2017); rock type, thickness, 

geometry, isotropism, metamorphism and weathering are the 

main factors controlling the reflection behaviour of these 

rocks. Thus, to highlight the spectral characteristics of each 

rock, several studies (Adiri et al., 2017; Amri et al., 2017; 

Asadzadeh and de Souza Filho, 2016; BinamMandeng et al., 

2018; Kumar et al., 2015; Ninomiya and Fu, 2016; Pour and 

Hashim, 2012; Rajendranand Nasir, 2017) have used many 

enhancement treatments on Landsat and/or Aster images. 

Many authors reviewed various methods and various spectral 

processing for geological mapping e.g. (Asadzadeh and de 

Souza Filho, 2016; Bishop et al., 2018b; van der Meer et al., 

2012)multiple reviews were about enhancements used for 

SWIR and VNIR bands of ASTER and/or Landsat images. 

Recently launched, Sentinel-2 with its Multi-Spectral 

instrument has shown its effectiveness in several studies on 

different subjects. In literature, they include salinity 

discrimination (Bannari et al., 2018), vegetation 

studies(Frampton et al., 2013; Qiu et al., 2017), water bodies 

mapping (Kaplan and Avdan, 2017), lake water quality 

(Toming et al., 2016) and coral reef mapping(Hedley et al., 

2016) 

The use of MSI Sentinel-2A for geological remote sensing was 

first evaluated by (van der Meer et al., 2014). He compared the 

capacity of the Sentinel 2A MSI bands to that of ASTER and 

Landsat 8 VNIR and SWIR bands. He concluded that these 

bands can be used in band ratios that were previously designed 

for ASTER and Landsat. He has also demonstrated a good 

correspondence between those bands. 

In the present paper; based on the geological studies carried in 

the region of Tafilalet (Baidder et al., 2016, 2008; Lubeseder 

et al., 2010; Michard et al., 2008; Soulaimani and Burkhard, 

2008) and based on the remote sensing methods used in such 

geological mapping studies (Bishop et al., 2018b; Fagbohun et 

al., 2017; Rajendran and Nasir, 2017; Asadzadeh and de Souza 

Filho, 2016; van der Meer et al., 2012; Bannari et al., 2015, 

2016); we try to deduce the best improvement procedure (OIF, 

DS or MNF) that can be used to discriminate rock lithology 

encountered in the region. We also aim to classify lithofacies 

by processing sentinel 2A multispectral data. For this purpose, 

the angle spectral mapper (SAM) and the maximum likelihood 
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classifier (MLC) were used for classification. The regions of 

interest (ROI) spectra of the image were used as endmembers. 

For best accuracy; SAM and MLC classifiers were compared 

and a choice was made for the classifier to be used as a support 

for geological mapping. The validation was done using 

localized truth ROIs with the GPS coordinates of outcrops in 

the field (collected samples) and on the geological map at 

1/50000. 

2. MATERIALS AND METHODS

2.1. Study site and geological settings. 

The study area (fig.1) is located near to the eastern boundary 

of Morocco between the coordinates 4°30’W 31°15’N and 

3°45’W30°45’N. It’s known forits semi-arid to arid climate 

and its outstanding geological landscapes, outcrops and 

fossils. Structurally; it’s located in the southern part of the 

OUGNAT-OUZINA axis and in the southeast of the Tafilalet 

basin. It is limited at the east by the Guir Hamada, and at the 

west by the MAIDER basin. It is bounded by the KemKem 

domain and the Oumjrane-Taouz fault (OJTF) at the south and 

at the North by the Erfoud anticlinorium. The area is 

recognized by its highly mixed lithology and surprising 

structures such as the croissant or boomerang-shaped Tijekht 

anticline(Baidder et al., 2016).  

Fig.1. lithological outcrops and Structural schema of the 

study area (South Ougnat-Ouzina axis and Southeast Tafilalet 

Basin), modified after (ALVARO et al., 2014b; 

BENHARREF et al., 2014b) and assembled from Irara and 

Merzouga sheets of the geological map of Morocco at 

1/50000 (National Plan for Geological Mapping). OJTF: 

Oumjerane-Taouz Fault; OZF: OuedZiz Fault. 

After previous studies in the region (ALVARO et al., 2014b; 

Baidder et al., 2016, 2008; BENHARREF et al., 2014b; 

Lubeseder et al., 2010; Michard et al., 2008; Pouclet et al., 

2017; Soulaimani and Burkhard, 2008), lithological outcrops 

encountered range from Precambrian to Quaternary. The 

formations are folded along east-west axes withbending axes 

to the east. The anticlines expose the Cambrian and 

Ordovician, while the synclines include the Devonian 

andtheCarboniferous. Those formations are mainly 

sedimentary to weakly metamorphised. They are hosting 

(Pouclet et al., 2017) some magmatic alkaline rocks such as 

doleritic or basaltic sills or laccoliths. 

According to the explanatory notes of recent sheets at 

1/50000° of Moroccan geological map “sheets of: Al Atrous, 

Irara, Merzouga, Mfis and Tawz” (ALVARO et al., 2014a, 

2014b; BENHARREF et al., 2014c, 2014a, 2014b) the 

formations encountered in the study area are summarized , in 

the figure4 . 

2.2. Data sets used 

The data used in our study is composed of Sentinel-2A images 

and geological map of Morocco at 1/50000° (sheets mentioned 

above).  SENTINEL-2A is a wideswath (290 km), high-

resolution, multi-spectral imaging mission. Its instrument 

(MSI) samples 13 spectral bands: (i) four VNIR bands (B2, 

B3, B4 and B8) at 10m, (ii) four red edges bands(B5, B6, B7 

and B8a) andtwo SWIR bands (B11 and B12) at 20m, (iii) 

three bands (aerosol, water vapour and cirrus SWIR 

respectively B1, B9 and B10) at 60m spatial resolution (Table 

1). 

S2 

band 

 Spatial 

Resolution 
(m)  

Central 

Wavelength 
(nm)  

Bandwidth 

(nm) 

V
N

IR
 

1 60 443 20 

2 10 490 65 

3 10 560 35 

4 10 665 30 

5 20 705 15 

6 20 740 15 

7 20 783 20 

8 10 842 115 

8a  20 865 20 

9 60 945 20 
S

W
IR

 10 60 1375 30 

11 20 1610 90 

12 20 2190 180 

Table1. .Spatial and spectral characteristics of sentinel 2A 

bands (https://sentinel.esa.int) 

Two granules at level-1C, with Top of Atmosphere (TOA) 

reflectance were acquired from the Copernicus Open Access 

Hub Https://scihub.copernicus.eu/dhus/#/home. 

S2A_MSIL1C_N0205_R051_T30RUV_20170913T105335 

S2A_MSIL1C_N0205_R051_T30RVV_20170913T105335. 

They overlap the study area and are projected with UTM at the 

30N zone. They were chosen with 0% cloud coverage and 

were sensed on the same time: 2017-09-13T10:50:21  

2.3. Methodology 

The flowchart of the methodology used in this study is shown 

in Figure2 and the processes are described below. The 

software used is: (i) Sentinel Application Platform SNAP 5.0 

for atmospheric correction and resizing; (ii) ILWIS OPEN 

3.8.5.0 for the calculation of the OIF; (iii) "Image Viewing 

Environment" (ENVI) 5.3 for all other pre-processing and 

processing and (iv) "Arc Geographic Information System" 

(ArcGIS) 10.3 for layout.  

2.3.1. Pre-processing: The two TOA (Top of Atmosphere) 

sentinel granules were radiometrically and geometrically pre-

corrected at the ESA sentinel hub. The atmospheric correction 

was applied by the “SEN2COR L2A” processor (SEN2COR, 

n.d.), implemented in the Sentinel2 SNAP Toolkit;

downloaded from:  http://step.esa.int/main/

A corrected image "level 2A" with the reflectance at the

bottom of the atmosphere (B.O.A.) has resulted for each

granule. The 20m resolution bands (5, 6, 7, 8a, 11 and 12) were

resampled to 10m with nearest neighbour method. Then, for

each granule; all bands (2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12) were

stacked and the resulting images were mosaicked based on the

georeference(figure3). Similarly, the sheets of the 1: 50000°

geological map have been mosaicked (figure4) and co-
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registered on the Sentinel-2 image resulted from the pre-

processing steps. 

2.3.2. Image enhancements: All of the enhancements used in 

the study have been applied to the mosaic resulting from the 

pre-processing above, but for Optimum Index Factor, the 

bands must be in 8bits format. 

2.3.2.1.. Optimum index factor “OIF”: Chavez (Chavez et 

al., 1982) developed optimum index factor (OIF) to identify 

the combination that contains the most information and the 

least amount of duplication. It chooses the best band 

combination to use for interpretation. In the OIF method, the 

optimal band combination is determined according to the 

standard deviation of the bands and the inter-band correlation 

coefficient. Usually, the informative bands have small 

correlations and large spectral variance. 

Figure 2:  Flowchart of the methodology 

Figure3: RGB (432) true-colour mosaic image of the study 

area (resulted from pre-processing) 

The optimum combination of bands out of all possible 3-band 

combinations is the one with the highest amount of 

'information' (highest sum of standard deviations), with the 

least amount of duplication (lowest correlation among band 

pairs). The algorithm used for calculating the OIF is composed 

of three steps (ILWIS software help): (i) The number of 

possible combinations of three bands within the map list is 

determined, (ii) then, for each combination of three bands, the 

OIF is calculated as (1): 

Figure4: Mosaic of geological map of Morocco at 1/50000° 

(sheets: a: Irara; b: Merzouga; c: Mfis; d: Al Atrous; e: Tawz) 
(ALVARO et al., 2014a, 2014b; BENHARREF et al., 2014c, 2014a, 

2014b) 

𝑂𝐼𝐹 =
∑ 𝑆𝑘
3
𝑘=1

∑ 𝐴𝑏𝑠(𝑟𝑗)
3
𝑗=1

 (1) 

(iii) Finally, the OIF values are ranked for all RGB

combinations.

The largest OIF will generally have the most information (as

measured by variance) with the least amount of duplication (as

measured by correlation).

2.3.2.2. Decorrelation stretch: Decorrelation Stretch is used 

to remove the high correlation (figure5) commonly found in 

multispectral data sets.  

Figure5: Correlogram of sentinel-2A bands used in the study. 

(Solid ellipse and darker blue show higher correlation) 

It requires three bands for input and produces a more colourful 

composite image with less correlation.  

2.3.2.3. Minimum Noise Fraction (MNF): MNF is a noise 

reduction process used to increase the signal-to-noise ratio 

(SNR) in multispectral images. It is an algorithm (GREEN et 

al., 1988) that consists of two consecutive rotations of PCA: 

(i) the first rotation use the noise covariance matrix to

decorrelate and resize the noise in the image (Noise whitening

process). Thus the noise has a unit variance and no band-to-

band correlation, (ii) the second rotation uses the principal

Here:Sk is the standard deviation for bandk, and rj is the absolute value of 
the correlation coefficient. 
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components derived from the result of the first rotation. The 

data space is divided into two parts: one part associated with 

large eigenvalues and coherent Eigenimages, and a 

complementary part with near-unity eigenvalues and noise-

dominated images. By using only the coherent parts, the noise 

is separated from the data, thus improving the results of the 

spectral processing. The inverse of MNF is generally used to 

return to the first state of the image (with correct digital 

numbers “DN”) but with less noise. This image can be 

correctly used for other spectral treatments (classifications or 

spectral analysis). 

2.3.3. Endmembers extraction. The critical step for the 

classifications in our study is the determination of the 

endmembers (Training Samples). Their mean statistics and 

spectra are used as a reference in the algorithm of the 

classifiers. In the literature, for classifying hyperspectral or 

multispectral data multiple endmembers extraction methods 

are cited (Xu et al., 2015; Roth et al., 2012; Veganzones and 

Graña, 2008).  

We opted for a visual technique based on:(i) outcrops in the 

field (GPS coordinates in support),  (ii) visual interpretation on 

the enhanced images supported by spectral profile of pixels in 

the best OIF image, and (iii) a vector layer of lithological facies 

from the geological map at 1/50,000° (Mosaic of sheets 

mentioned above) recently published (ALVARO et al., 2014a, 

2014b; BENHARREF et al., 2014a, 2014c, 2014b). The 

spectra of the endmembers extracted are presented below (fig. 

7).  

On the other hand, to limit the spectral similarity between 

endmembers, we have used the separability of the ROI’s pairs 

to select only the most spectrally distinct ones. After (Csendes 

and Mucsi, 2016) separability is an accurate method for 

checking the similarity of a selection of ROI’s. In Exelis Envi, 

the separability is computed with Jeffries-Matusita(JM) 

distance and Transformed Divergence (Richards and Jia, 

2006). In bothmethods, the separability is calculated from 

class means and covariance matrices. They give indexes values 

on a scale of “0” to “2” where “0” refers to complete similarity 

and “2” indicate perfect separability. 

In our study, and after several attempts to collect the ROI’s 

covering the same facies on all the improved images (DS, PCA 

and MNF), we opted for a separability threshold of 1.96 for the 

ROI pairs to be acceptable. The figure7 shows the spectra of 

the forty two “42” endmembers of the area. 

Figure7: Spectra of endmembers used for lithological 

classification in the study area 

2.3.4. Classification: In order to evaluate the contribution of 

sentinel-2A images in the litho-facies mapping of the region, 

we used the supervised classification based on the 

endmembers that we extracted earlier. The input image was the 

result of the inverse of MNF, thus with all the spectral 

characteristics and with very little noise (high S/N ratio). 

Summary of the types of classifications used here is given 

below. 

2.3.4.1. Spectral Angle Mapper: The Spectral Angle Mapper 

(SAM) is an automated method for comparing image spectra 

to a reference spectra or a spectral library(Petropoulos et al., 

2010). The algorithm determines the similarity between two 

spectra by calculating the “spectral angle” between them, 

treating them as vectors in a space with dimensionality equal 

to the number of bands (nb). SAM determines the similarity of 

an unknown spectrum t to a reference spectrum r, by applying 

the following equation (CSES, 1992): 

𝜶 = 𝐜𝐨𝐬−𝟏(
∑ 𝒕𝒊𝒓𝒊
𝒏𝒃
𝒊=𝟏

√∑ 𝒕𝒊
𝟐𝒏𝒃

𝒊=𝟏 √∑ 𝒓𝒊
𝟐𝒏𝒃

𝒊=𝟏

)      (2) 

The SAM algorithm implemented in ENVI takes as input a 

number of “training classes” or reference spectra from ASCII 

files, ROIs, or spectral libraries. The result is a classification 

image showing the best SAM match at each pixel. Lighter 

pixels in the rule images represent smaller spectral angles, and 

more similarity to the reference spectrum.  

2.3.4.2. Maximum likelihood classifier (MLC) is a common 

multivariate statistical classification method embedded in 

many image processing software packages.  

The MLC calculates the probability that a pixel in the image 

belongs to a specific class assuming that the statistics of all 

classes are normally distributed for all bands in the image 

(Richards, 2013) . 

3. RESULTS

3.1. Enhancement images: 

To increase the discrimination of lithological facies in the 

study area, the decorrelation stretch was applied on the RGB 

combination with highest OIF. Figure (8) shows this last image 

in (a). The image resulted from the decorrelation stretch is in 

(b).  

In the image with high OIF, vegetation is in red, the quaternary 

cover is in white and grey, the sands are in yellow; the 

Mesozoic and Cenozoic cover are in yellowish green and the 

Palaeozoic is in dark blue, green and maroon. 

Figure 8: (a) False colour combination with highest OIF 

(R=b8, G=b11, B=b2) 

After the decorrelation stretch and despite the great complexity 

of the outcrops of the area, the facies could be very well 

Here, nb: the number of 
bands in the image, t: pixel 

spectrum, r: reference 

spectrum : spectral angle 
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distinguished to the human eye. So, we can easily identify the 

vegetation in neon blue, the sands in green and soft green, the 

quaternary in purplish grey and dark blue, the Meso-Cenozoic 

cover in lime green and leaf green and the Palaeozoic 

formations in the other colours remaining in the image (sky 

blue, lavender blue, peach, orange, purple, magenta etc ...) 

Figure 8: (b) Decorrelation stretch for the best OIF 

combination (R=b8, G=b11, B=b2). 

3.2. MNF transformation. 

The transformation of the MNF allowed us to discriminate 

outcrops still confused at this stage. A very representative 

example is the relatively thin formations of the first Bani of the 

Ordovician (ord4a and ord4b). They were well distinguished 

after this transformation by MNF (fig.10). 

Figure 9: MNF RGB image, with (Red=EV1, Green=EV2, 

Blue=EV3). 

3.3. Classifications. 

3.3.1. Spectral angle Mapper classification (SAM): Due to 

the high lithological diversity at the pixel resolution (10 m), 

this type of classification based on spectra of outcrops, was not 

very satisfactory. The figure 10 shows the image resulted. 

3.3.2. Maximum likelihood classifier classifications MLC: 

At first sight, in this classification based on the machine 

learning, the image resulted (fig.11) was very satisfactory and 

the outcrops were easier discriminated.   

3.3.3. Accuracy assessment and validation 

3.3.3.1. Accuracy assessment: In order to estimate the 

percentage of correctly classified pixels, the evaluation of the 

accuracy of the classification was done by matrix confusion 

and based on truth points in the field (outcrops with several 

GPS points). 

Testing ROIs collected on a vector layer from the mosaicked 

geological map at 1/50.000° (figure4) were also used. The 

figure12 present the compared overall accuracies and the 

kappa coefficients for the resulted classifications.  

Figure 10: Spectral Angle Mapper classification image 

Figure 11: Maximum likelihood classification image 

Figure 12: Compared accuracy of SAM and MLC used 

3.3.3.2: Validation: The validation was done by identifying 

classes of the MLC result with their respective landcover 

(samples from field fig.13) with GPS points support, geologic 

map at 1/50000° (mosaic of figure4) and Google Earth 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W12, 2019 
5th International Conference on Geoinformation Science – GeoAdvances 2018, 10–11 October 2018, Casablanca, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W12-75-2019 | © Authors 2019. CC BY 4.0 License.

 
79



image. The figure15 show some samples and their respective 

localisation in the map. 

Figure13: samples used for validation with the ANN image 

4. DISCUSSION

4.1. Image enhancement: 

In order to have a qualitative evaluation of the contribution of 

sentinel2A images in lithofacies mapping in our area, a subset 

of the RUV and RVV granules acquired on the same date 

(2017-09-13T10: 50: 21) was used in this study . The 

atmospheric correction was made using the SEN2COR 

extension integrated into ESA SNAP software.  

The great diversity of minerals at the pixel scale has been a 

major handicap for spectral analysis, usually used in remote 

sensing studies applied to geology (with spectral libraries 

ASTER or USGS). However, enhancement treatments of these 

images using techniques already used on ASTER data (Pour 

and Hashim, 2012; Rajendran and Nasir, 2017) or LANDSAT 

(van der Werff and van der Meer, 2016) have yielded very 

satisfactory results. 

First, a resampling of the 20m bands (5, 6, 7, 8a, 11 and 12) to 

the 10m resolution was performed to maximize the accuracy 

of facies boundaries and minimize confusion between them. 

The RGB image with the highest value of the OIF (fig. 8a) 

made it possible to better distinguish the outcrops of the zone. 

This same RGB combination served as input for the 

decorrelation stretch process (fig.8b). The resulting image of 

this technique showed accurately the Meso-Cenozoic and 

Quaternary cover formations. 

The transformation by MNF made it possible to better 

discriminate the formations of the substratum which were 

more confused until this stage. The boundaries between these 

formations become sharper by using the interactive stretching 

or by varying the order of channels of this MNF image. 

4.2. Endmembers extraction: 

The extraction of endmembers used as training samples is a 

decisive step influencing the accuracy of the classification. In 

this study, we have tried to use the Pixel Purity Index (PPI) 

method which is widely used and because of its 

implementation in the Envi software.  But, in our case, the 

spatial heterogeneity of the outcrops and their impurity on the 

pixel scale has limited the reliability of this method (PPI). 

Thus, we have used the classical method based on images 

visual interpretation (DS and MNF), extreme class from scatter 

plots between the least correlated bands (B11; B8; B2), and 

pixel spectral plots comparison. Finally, the  

4.3. Classification: 

Two types of classifications were chosen in this study in order 

to have the most precision for the adoption in lithofacies 

mapping. These were: (i) SAM based on the average spectral 

signal of the ROI's and (ii) MLC, learning machine, based on 

the maximum statistical likelihood between the chosen ROI's. 

The results obtained showed that the MLC has the highest 

overall accuracy of 76% with a Kappa coefficient of 0.75. 

The superposition of this classification image with the 

geological map shows a great similarity between the classes 

and the geological formations of the map.  

The validation of this classification was based on the samples 

collected in the field with their GPS coordinates (fig.12), as 

well as on the recently published geological map. 

This study allowed us to classify lithofacies from an arid to 

semi-arid zone using sentinel 2A images. It showed as for (van 

der Werff and van der Meer, 2016) that sentinel2A images lend 

themselves very well to geological studies by remote sensing 

like their predecessors ASTER and LANDSAT.   

Finally, by providing in situ measurements of spectral 

characteristics for typical formations of the region, Sentinel 2 

images may allow greater precision in the classification of 

lithofacies. Thus, it will be a great contribution to the study 

oriented spectral analysis. 

5. Conclusion

This paper has highlighted the important role of sentinel2 

remotely sensed images in litho-facies mapping of an arid to 

demi arid region (Tafilalet, Morocco). The enhancements 

techniques used (OIF, DS, MNF) have permitted 

discrimination of about all outcrops in the study area with high 

details (10m of resolution). A comparative classification based 

on MLC and SAM was developed and has shown that the MLC 

has given the high accurate results. The overall accuracy based 

on the confusion matrix was 76 % and the kappa coefficient 

was 0.75. The validation of the classification was done with 

the georeferenced samples from the field (GPS coordinates) 

and the mosaicked geological map recently published.  

So, to act in building the lithological map of our area of study 

we have opt to use the sentinel-2 images in synergy with 

enhancements processes (MNF and DS) and maximum 

likelihood classifier.  

Finally, we can conclude that the VNIR and SWIR bands of 

sentinel2 images with their high spectral and spatial 

resolutions (10m & 20m and 12 bands between 443nm and 

2190nm) can give a very good opportunity for geologists to 

improve their investigations in the zones with difficult access. 

Indeed, with a good improvement of these images by the 

multiple processes currently available and a suitable 

classification (MLC for our case) we can easily draw up a very 

accurate litho-facies map. 
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