
MAPPING OF BLUE CARBON ECOSYSTEMS: EFFECT OF PROXIMITY, ACTIVITY 

TYPES AND FREQUENCY OF VISITS IN THE ACCURACY OF PARTICIPATORY 

MAPS 
 

 

R.R.T. Francisco1,2, A.C. Blanco1,2, M.A.G. Manalili1,2, N.B. Gatdula1,2,  

A.J.G. Songcuan1, K.P.C. Landicho1,2, R.B. Reyes1,2, R.J.A. Apura1,2 

 

1Training Center for Applied Geodesy and Photogrammetry, University of the Philippines-Diliman, Quezon City, Philippines 1101 

 2Department of Geodetic Engineering, College of Engineering, University of the Philippines-Diliman, Quezon City, Philippines 

1101 

 (rtfrancisco, acblanco, nbgatdula, kclandicho, raapura)@up.edu.ph;  

(mikelmanalili21, ajsongcuan)@gmail.com; rbr_lally@yahoo.com 

 

Commission VI, WG VI/4 

 

 

KEY WORDS: Mangroves, Seagrasses, Participatory Mapping, Geographic Information System 

 

 

ABSTRACT: 

 

Interest in blue carbon has drastically increased in recent years, particularly in improving the coastal resource carbon storage estimates 

and the development of methodology for identifying and monitoring such resources. In coastal resource mapping, participatory 

mapping techniques have the potential to provide a level of granularity and detail by taking advantage of local knowledge. In this work, 

we aim to evaluate the agreement between blue carbon ecosystem status obtained from participatory mapping versus the ones 

discriminated from satellite images, as well as assess how “relative proximity” to landmarks affects the accuracy. Results showed that 

the accuracy of mapped mangrove extents, evaluated as intersection-over-union, is positively correlated with frequency of visits. It is 

also found that maps generated by participants who have jobs or activities that nurture awareness about mangroves and seagrasses tend 

to agree better with remotely-sensed maps. The participants were even able to identify small patches of mangroves and seagrasses that 

are not present in the classified satellite images. While our initial work explores factors that impact the consistency between these 

sources, there is a need to establish a baseline for which both sources of information are evaluated against; and define relevant accuracy 

metrics. Our final goal is to systematically combine these two sources of information for an accurate holistic coastal resource map.   

 

 

1. INTRODUCTION 

The oceans encompass an estimated 38,000 gigatons (Gt) of 

carbon and has absorbed a third of the anthropogenic carbon 

dioxide (CO2) emission through physical, chemical and 

biological processes (Mcleod et al., 2011). Several research 

studies have emphasized that coastal ecosystem composed of 

plants such as mangroves and seagrasses play a valuable role in 

the sequestration of carbon. While these coastal plants are only a 

smaller percentage compared to the overall global forests, 

mangrove forests account for 13.5 Gt per year of carbon 

sequestration (Alongi, 2012) and seagrass meadows, which 

occupies only 0.2% of global ocean account for 27.4 Gt per year 

(Duarte et al. 2005) – far more efficient than terrestrial forests. 

With an estimated 0.15-1.02 Petagram of carbon (Pg) emissions 

annually (Pendleton et al., 2012; Miteva et al., 2015), accurately 

accounting for the C uptake of coastal ecosystems becomes 

critical. 

 

Blue carbon (carbon stored in oceans, including coastal marine 

environments) study has increased in recent years, more 

primarily in improving the estimates of coastal resource blue 

carbon storage (Lavery et al., 2013). This also includes the 

development of workflows in identifying and monitoring blue 

carbon resources (e.g. mangroves) as well as estimating the 

corresponding carbon capacity. Remote sensing through satellite 

imagery, i.e., optical and radar (Purnamasayangsukasih et al., 

2016) is largely considered as a viable method by far (Mensah, 

2013) as it offers larger coverage compared to traditional data 

collection approaches. In coastal resource mapping where 

species-level classification is of interest, satellite-based 

techniques often suffer from temporal and spatial inconsistency 

(Duffy et al., 2018) and spatial resolution of available satellite 

images are still coarse for such level of mapping. In this context, 

detailed information from participatory mapping, which takes 

advantage of local knowledge, can help address such limitations.  

 

Participatory mapping follows the same fundamental principles 

and objectives as participatory research; but combines the 

informal knowledge of the local community with modern 

cartography tools to create composite maps. This approach 

allows the locals to create maps based on bits of qualitative, 

quantitative, tangible and/or intangible information around a 

given area developed over time through their personal 

experiences (Warner, 2015). The goal of participatory mapping 

is to incorporate local spatial and environmental knowledge of 

spaces to formal forms of geographic data in order to identify, 

understand, analyze and resolve issues relating to such spaces 

(Aheto et al., 2016; Beverly et al, 2008; Cadag and Gaillard, 

2012). 

 

Knowledge of the coastal communities are vital in filling in the 

gaps where remotely-sensed data is sparse or limited. Several 

studies have shown that such information is much richer and 

granular; and provides holistic and long-term accounts based on 

experience relating to the pertinent coastal resources (Mensah, 

2013; Brown, 2018). For instance, the community’s first-hand 

experience can aid in the identification of various coastal plant 

species; and historical accounts can shed insights on the factors 

that led to resource growth or degradation. However, this poses 

the challenge of ensuring its accuracy and reliability as 

community-based mapping activities tend to depend on 
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participants’ memory and are inherently subjective (Vajjhalla, 

2005). Precision of object and spatial memory can be driven by 

the familiarity of the participant over his/her environment and 

proximity to recognizable landmarks. This impacts the analysis 

of blue carbon ecosystems, corresponding blue carbon stocks, 

future conservation and rehabilitation strategies.  

 

To date factors influencing the accuracy of a community-based 

map have not been rigorously studied. With respect to blue 

carbon ecosystems, identifying these factors and quantifying 

their impact on the quality of generated maps is an important step 

to help guide subsequent mangrove/seagrass mapping activities 

(i.e. employing the right people to participate).  

 

In this study, we aim to evaluate the effect of relative proximity 

of landmarks or places frequented by locals to blue carbon 

ecosystem information generated through participatory mapping 

as compared to satellite-derived classified maps. Proximity in 

this case means Euclidean proximity in space that tend to be 

influenced by frequency of visits to places as well as seasonal 

activities in the area. This research is part of Project 10: 

Geospatial Decision Support Systems and Capacity Building on 

Geomatics for Mangrove Seagrass Conservation (CapGeoDSS) 

under the Integrated Assessment and Modelling of Blue Carbon 

Ecosystems for Conservation and Adaptive Management 

(IAMBlueCECAM) Program funded by the Department of 

Science and Technology Philippine Council for Industry, Energy 

and Emerging Technology Research and Development (DOST-

PCIEERD).  

 

Our contribution is summarized as follows: 
• We compare the agreement between community-based 

versus remotely-sensed mangrove and seagrass extents (Sec. 

3.1) 

• We demonstrate that participants’ proximity and familiarity 

affect the accuracy of a community-based mangrove and 

seagrass maps.  

• We show that daily activities of the participants (e.g. fishing) 

is an important criterion for choosing the right people in a 

mangrove/seagrass mapping activity. 

 

2. METHODOLOGY 

2.1 Study Area 

Busuanga is an island municipality located in the north-eastern 

section of Palawan, Philippines – an archipelagic province 

known for its pristine marine environmental condition and 

several wildlife sanctuary and protected areas. The study area is 

composed of the three coastal barangays in Busuanga namely 

Concepcion, Bogtong and Salvacion (Fig. 1a). Smaller islands 

and marine protected area with mangroves and seagrass beds are 

within these coastal sites.  

 

 

 
 

Figure 1. (a) The study area located in Busuanga, Palawan, 

Philippines. The site is known for marine biodiversity; and (b) 

The PlanetScope image utilized for the site. The site was divided 

into three sections labelled S1, S2, S3. Each section has a small 

overlap among other sections Each map was assigned to a group 

of volunteers in the participatory mapping activity. 

 

2.2 Participatory Mapping Workflow 

The research workflow, shown in Fig. 2, is divided into three 

stages, namely, pre-mapping, mapping proper and post-mapping.  

 

2.2.1 Pre-mapping Stage 

 

In the pre-mapping stage, the base map of the study area was 

prepared using a 3-meter resolution PlanetScope image (Planet 

Team, 2017) of Busuanga, Palawan. This base map was further 

divided into three sections for more detailed and manageable 

mapping of information (see Fig. 1b).  

 

Participants from different sectors of the community, namely, 

elders, fisherfolks, students, women and locals who are residents 

for more than 10 years were requested to attend the activity. A 

survey questionnaire was also prepared to capture relevant 

information such as demography, participant’s familiarity in 

mapping, environment, community, and feedback on the 

mapping activity.  
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Figure 2. Participatory mapping workflow in the study. The 

workflow is divided into three stages: pre-mapping, mapping 

proper and post-mapping. 

 

2.2.2 Mapping Proper 

 

A participatory mapping activity, attended by 24 residents from 

the three coastal sites, was facilitated in Busuanga, Palawan on 

May 29 to 30, 2018. Preliminary details such as the overview of 

the activity and mapping instructions were presented to the 

participants. They were then provided with the survey 

questionnaires that they need to answer fully. The participants 

were divided into three groups (Table 1) and each group was 

given one section of the whole site. They were asked to identify 

and map the extent per species of mangroves and seagrasses 

present in their area. They also mapped the extents where coastal 

resources are present as well as the uses, issues and problems and 

past damages in these resources. Individual mapping of places 

that they visited was also done together with the identification of 

these activities and frequency of visit. After the activity, each 

group chose a representative and presented their resulting map to 

the other participants. They also answered the survey 

questionnaire during and after the mapping proper. 

 

Group Age Job/Work 

1 18 

42 

54 

44 

29 

19 

47 

None 

Nutrition scholar 

MPA Guard 

None 

Health worker 

None 

Health worker 

2 

 

 

 

 

42 

49 

43 

55 

46 

45 

49 

34 

60 

50 

IPMR 

MPA Guard 

Mangrove planter 

Mangrove planter 

Fisherman 

Health worker 

Health worker 

Health worker 

Health worker 

Brgy. Official 

3 67 

64 

24 

42 

55 

40 

51 

Fisherman 

Fisherman 

Brgy. Official 

Businessman 

Fisherman 

Fisherman 

Fisherman 

Table 1. Assigned groups of the 24 residents of Busuanga who 

volunteered for the participatory mapping activity. 

2.2.3 Post-Mapping Stage 

 

For the post-mapping activity, the participatory maps were 

scanned, digitized and analysed. The result of the activity was 

compared with the satellite-based mangrove and seagrass extent 

maps produced by IAMBlueCECAM Program’s Project 1: 

Mangrove Remote Sensing Using LiDAR, Radar, Multispectral 

and Hyperspectral Data (MaRS) and Project 2: LiDAR, 

Hyperspectral, and Sonar Remote Sensing of Seagrass Meadows 

(SeaRS). The mangrove and seagrass maps were derived from 

Sentinel 2 and PlanetScope images of the study area, 

respectively. These blue carbon ecosystems were then classified 

using the supervised maximum likelihood classification method. 

A presentation to and consultation with the locals and the 

municipal government of Busuanga on the results of the study 

were also conducted.    

 

3. RESULTS AND DISCUSSIONS 

3.1 General observations 

There was a total of 20 species of mangroves in 95 areas 

identified by Group 1 (G1), 33 species in 63 areas by Group 2 

(G2), and 13 species in 93 areas were mapped by Group 3 (G3). 

Common mangrove families mapped were Avicennia, Bruguiera 

and Rhizophora. For seagrass, G1, G2, and G3 respectively 

identified 7 species in 34 areas, 7 species in 12 areas, and 3 

speciesn 12 areas. Halodule, Cymodoceae, and Enhalus were the 

common seagrasses observed. 

 

Overall, the participants identified 353.67 (361.50) hectares of 

mangroves (seagrass) within the study area. Comparing these 

estimates with mangrove and seagrass maps using satellite 

images (Fig. 3), initial visual inspection indicated that the extents 

(or patches of) the marine resources were closely captured by the 

participants. However, it was also observed that there are 

instances where resources were identified in the participatory 

maps (PM) but not in the satellite-based maps; and vice versa. In 

Fig. 3a for instance, a large portion of mangrove forests in the 

south of Bogtong present in the satellite map was not delineated 

by the participants as mangrove. On the other hand, we also 

found certain regions particularly in the western islands of 

Concepcion that were identified by the locals as seagrass (Fig. 

3b). Such features were not present in the satellite-based 

classification map. 
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Figure 3. (a) Overlayed patches of mangroves obtained from 

participatory map (PM, yellow solid) and Sentinel-2 classified 

image (RS, red hatched); (b) Overlayed patches of seagrass 

meadows obtained from participatory map (yellow solid) 

PlanetScope classified image (red hatched).   

 

 
Source 

Area in hectares 

G1 G2 G3 Overall 

M
an

g
ro

v
es

 PM 26.56 79.65 247.47 353.67 

Satellite 12.33 309.50 205.07 460.83 

Intersection 4.26 30.82 183.93 219.01 

Union 34.62 358.33 268.61 603.47 

IoU (%) 12.31 8.60 68.41 36.29 

S
ea

g
ra

ss
 PM -- 6.86 354.63 361.50 

Satellite -- 117.25 196.93 252.00 

Intersection -- 2.06 124.93 126.99 

Union -- 122.06 426.63 486.50 

IoU (%) -- 1.69 29.28 26.10 

Table 2. Intersection-over-union (IoU) between participatory 

maps (PM) and satellite-based classified maps of mangroves and 

seagrass. 

To quantify the agreement between the satellite-derived and 

resulting participatory maps, the spatial intersection-over-union 

(IoU) for both mangrove and seagrass maps were calculated 

(Table 2). In the combined mangrove forest area (union) of 

603.47 ha, both maps only agreed on 219.01 ha (36.29%) of 

mangroves. The agreement between maps for seagrass was 

26.10%. G3 generated the highest value among the three for 

mangrove extent with 68.41% agreement. For G1, the mangrove 

area classified (27.56 ha) was twice that of the satellite-based 

map (12.33 ha) and only 4.26-ha intersection zone. This resulted 

to 12.31% agreement only. G2 has the lowest value of IoU 

(8.60%) that was brought about the misclassification of a large 

parcel of mangrove forest in the south of Bogtong. For seagrass, 

the portion for G1 was not covered by the satellite-derived map 

by SeaRS, thus no IOU was computed. Similar to the mangrove 

maps, G3 participants produced a result with higher agreement to 

the satellite-based seagrass map compared to G2. 

 

3.2 Effect of “proximity” and frequency of visits on map 

accuracy 

We hypothesize that the agreement between PM and satellite-

derived map is linked to the familiarity of the participant to the 

location being mapped; that is, the “proximity”, based on 

distance, by which an observer can perceive his surroundings and 

frequency of his visits. In Fig. 4, the frequency of visits of all 

participants in various locations in the map is plotted. The 

mainland (east side) is more visited more often than the islands 

in the west section. Participants who visit the islands were mostly 

fishermen (not shown in the figure). Therefore, it is expected the 

accuracy of the PM would be relatively higher in the mainland 

due to close proximity and higher frequency of visits. 

 

 

Figure 4.  Frequently visited locations of all participants. The 

mainland (east side) is frequently visited while only a few of the 

participants visit the islands (west side).  

 

To investigate this, the map was divided into 12×18 (row × 

columns) 1×1km grids. For each g(z), the IoU between PM and 

satellite-based maps were computed and correlated with the 

aggregate visits per year in the grid given by: 

 

𝑉𝑔(𝑧) =  ∑ 𝑣(𝑝)𝑝  if buffer(𝑝, 𝑟) ∩ 𝑔(𝑧) > 0           (1) 

 

where  z = grid index 

 p = location point 

 v(p) = visits per year at point p 

 r = buffer radius; set to 500 meters. 

 

Here, the v(p) was only added to Vg(z) if a point with a 500-m 

buffer radius r intersected with g(z). The calculations were done 

for each group in both mangrove and seagrass maps. Correlation 

between IoU and Vg(z) was then obtained using:  

 

Pearson′s 𝑟 =  
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2− (∑ 𝑥)2][𝑛 ∑ 𝑦2− (∑ 𝑦)2]
            (2) 

 

where x and y are the independent (Vg(z)) and dependent (IoU) 

variables, respectively. In order not to introduce an unnecessary 

bias, data points for grids with zero-valued IoU and Vg(z) were 

removed from the analysis. 

 

For mangroves (Fig. 5a), IoU is generally positively correlated 

with V, which suggests that degree of familiarity to a location 

plays a role in producing reliable participatory resource maps. G3 

generated the largest correlation coefficient r = 0.38. G2 and G1 

produce 0.35 and -0.21, respectively, but these results cannot 

support nor contradict our inference for G3 due to lack of data 

points. For G1, producing a non-zero IoU was particularly 

challenging partly because of the limited sizes of mangrove 

patches in the area.     

 

For seagrass maps, the negative correlation for G3 (-0.71) seem 

to imply that familiarity diminishes map accuracy. Inspection of 

the scatter plot showed two prominent clusters: (1) very high IoU 

achieved with Vg(z) < 2000; and (2) low IoU even when Vg(z) > 

3000. In the latter, the grid points z-116, z-136 and z-156 are part 
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of the vertical coastline covering west of mainland Concepcion 

and south Sagrada. In these locations, the participants identified 

significantly wider seagrass meadows compared to that of 

derived from PlanetScope images resulting to low IoUs. 

Nevertheless, both clusters show positive correlation between 

IoU and Vg(z) – consistent with the findings for mangroves. G2 

also demonstrated the positive correlation, there is a need for 

more data to arrive at a conclusive result. No data were found for 

G1 as no intersection between PM and satellite-based seagrass 

maps. 

 

 

Figure 5.  IoU vs. aggregated visits per year Vg(z) for (a) 

mangroves and (b) seagrass. Data points for grids with zero-

valued IoU and Vg(z) were not included in the plots. 

 

3.3 Influence of the participants’ daily activities and other 

demographic information 

Maps generated by participants who have jobs or activities that 

nurture awareness about mangroves and seagrass tend to agree 

better with remotely-sensed maps. G3 which was composed of 4 

fishermen, 1 MPA guard and 1 barangay official resulted to 

68.48% accuracy of mapped mangrove extents relative to the 

satellite-based map. On the other hand, G1, which was composed 

of 3 health workers, 1 nutrition scholar, 3 unemployed 

individuals, and only 1 MPA guard, was not able to delineate the 

extents as accurately. The difficulty can be further attributed to 

the characteristics of map assigned to them (S1) – smaller islands 

far away from the mainland that were frequently visited almost 

exclusively by fishermen. G2 comprised of an ample number of 

MPA guards, mangrove planters and fishermen; however, 

misclassification prevented the group from generating high IoU 

resource maps. 

 

Further analysis revealed that participants do not necessarily need 

to be adept in creating a map. Applying multiple correspondence 

analysis (MCA) on demographic information such as mapping 

abilities with respect to job and education level of the participants 

showed that the ability/inability to create a map is not indicative 

of one’s credibility. In Fig. 6, the job “fisherman” is closely 

related to “Can make a map? - N” but it turned out that G3, 

composed mostly of fishermen, generated remarkably high-

quality maps. At the very least, the ability to read a map is 

necessary as creating a map can be taught and assessed before the 

actual mapping begins.  

 

 

Figure 6. Symmetric plot of the first two principal coordinates 

relating the participants’ job, education level and mapping 

abilities. The ‘Y’ (‘N’) after each question indicates yes (no).   

 

Our results have clearly demonstrated another critical insight in 

participatory mapping that the job or the daily activities of the 

participants is an important criterion for choosing the right people 

in a mapping activity. In the case of this marine resource mapping 

study, fishermen and MPA guards contributed substantially to the 

accuracy of the maps. 

 

4. FINAL REMARKS 

A subtle limitation of our work is that the results presented in 

Sec. 3 came from a single mapping activity only; and 

consolidating data from multiple mapping activities may indeed 

yield more solid results. However, these initial findings reveal 

promising insights. By measuring the agreement of PM and 

satellite-based maps, we have established a baseline grasp of the 

capability of participatory techniques in creating reliable 

resource maps. We have shown that proximity, familiarity with a 

location, and type of activity influence the accuracy of 

participatory maps. We recommend that these criteria to be 

factored in determining the most qualified locals in a resource 

mapping activity.  

 

Maps of mangroves and seagrass (or generally any natural 

resource) produced through participatory techniques need to be 

carefully assessed for it to be useful for decision-making and 

planning. We have done an initial quantitative assessment. 

However, since maps generated through classification from 

satellite images cannot be considered as ground truth, field 

validation on the entire study area is integral to truly assess the 

correctness of PM. The same analysis can be performed using the 

data from field surveys to confirm our findings in Sec. 3. 

 

Locals were able to identify certain regions of mangroves 

/seagrasses that were not captured by satellite image 

classification; but we cannot dismiss the power of satellite-

derived maps either. Characterizing the strengths and weakness 

of both sources using field survey data as reference (e.g. 

identifying scenarios where PM is more reliable than satellite-

based classification and vice-versa) is an important step towards 

developing a standard mapping workflow/algorithm for 

integrating local knowledge with resource maps produced with 

3S (i.e., remote sensing, geographic information, global 

navigation satellite systems) technology.  
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Ultimately, an accurate depiction of the status of blue carbon 

ecosystem by considering all possible sources of information 

leads to a better estimate of CO2 sequestration; and therefore, 

better planning and conservation strategies. An accurate map of 

marine resources is fundamental. Factoring in species 

information, which was obtained from locals, is the next step. As 

a final note, the survey questionnaires administered to the 

participants during the mapping activity contain ancillary 

information such as knowledge on the changes in the extent of 

their marine resources over time, as well as reasons for such 

changes that will be essential for future analysis. 
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