
SMODERP2D SOIL EROSION MODEL ENTERING AN OPEN SOURCE ERA WITH
GPU-BASED PARALLELIZATION

M. Landa1, J. Jeřábek2, O. Pešek1, P. Kavka2

1 Dept. of Geomatics, Faculty of Civil Engineering, Czech Technical University in Prague,
Czech Republic - (martin.landa, ondrej.pesek)@fsv.cvut.cz

2 Dept. of Landscape Water Conservation, Faculty of Civil Engineering, Czech Technical University in Prague,
Czech Republic - (jakub.jerabek, petr.kavka)@fsv.cvut.cz

Commission IV, WG IV/4

KEY WORDS: Hydrology, Soil Erosion Models, GIS, Open Source, Parallel computing

ABSTRACT:

SMODERP2D is a runoff-soil erosion physically-based distributed episodic model used for calculation and prediction processes at
agricultural areas and small watersheds. The core of the model is a raster based cell-by-cell mass balance calculation which includes
the key hydrological processes, such as effective precipitation, surface runoff and stream network routing. Effective precipitation,
the forcing of the runoff and erosion processes, is reduced by surface retention and infiltration. Surface runoff consists of two
components: slower sheet and concentrated rapid rill flow. Stream network routing is performed line-by-line in the user predefined
polyline layer.
SMODERP is a long-term project driven by the Department of Landscape Water Conservation at the Czech Technical University
in Prague. At the beginning, SMODERP has been developed as a surface runoff simulated by profile model (1D). Later the model
has been redesigned using a spatially distributed method. This version is named SMODERP2D. Ongoing development is focused
on obtaining parameters of the hydrological models, incorporating new infiltration and flow routing routines, and conceptualization
of a rill flow and rill development. The model belongs to a family of so-called GIS-based hydrological models utilizing capabil-
ities of GIS software for geospatial data processing. Importantly, the SMODERP2D project is currently entering an open source
world. Originally the model could be run only in proprietary Esri ArcGIS platform. A new version of the model presented by this
manuscript adds support for two key open source GIS platforms, GRASS GIS and QGIS. A newly developed GRASS module and
QGIS plugin significantly increases the accessibility of the SMODERP2D model for research purposes and also for engineering
practice.
Middle scale distributed hydrological models often encounter with high computation costs and long model runtime. Long runtime
is caused by high-resolution input data which is easily available nowadays. The project also includes an experimental version of
the SMODERP2D model enabling the parallelization of computations. This parallelization is done using TensorFlow, and its goal
is to decrease the time needed for its run. It is supported by both CPU and GPU. Parallelization of computations is an important
step towards providing SMODERP2D web processing services in order to allow quick and easy integration to highly specialized
platforms such as Atlas Ltd.

1. INTRODUCTION

Erosion / hydrological models (EH) are being used for various
research or engineering purposes. Results of such models may
be used as input information for planning or designing soil con-
servation measures in the landscape and hydrological units -
basins. Runoff water volume and transported soil amounts or
discharge time series are being calculated in order to design the
protection measures sufficient for a given flood or soil transport
event. Another example of a practical application of EH mod-
els may be land-use change, build up areas development studies
or effect of those on water or soil transport regime. Great use
of EH models is also in extreme event forecasting. In research,
EH models are being used to proof a new theory or to test hy-
potheses related to mechanism controlling the runoff and soil
transport.

Empirical erosion models are often based on Universal Soil
Loss Equation (USLE), (Wischmeier et al., 1978, Renard et al.,
1997) and empirical hydrological models on the Curve number
method (CN) (Cronshey, 1986), concepts more than 30 years

old. Using empirical approaches may introduce limitations in
the protection measures design e.g. because mentioned models
do not take into account the transient nature of modelled pro-
cesses. Physically based models are being developed to over-
come the empirical models limitations.

Processes taking place in a landscape are spatially distributed,
which is the reason why GIS (Geographic Information System)
is often deploying in the modelling process taking advantage
of ready to use GIS features. EH models have similar struc-
ture (although each model is specific in the terms of processes
solved, its purpose or coding strategy). Runoff and soil loss are
initiated by precipitation which is, especially for larger areas,
spatially distributed process. Majority of models include an
infiltration routine with spatially distributed parameters, since
grassland and parking lot may be presented in a single hydro-
logical model and have vastly distinct infiltration characteris-
tic. Infiltrated water is transported to the soil which has varying
transport properties. Ponging water creates overland flow which
leads to a soil transport and may cause severe soil and nutrition
losses in the landscape. Linear (water courses, streets, ditches)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

143

or points (typically a water pump) features may be presented in
the modelled system and affect the water flow or soil transport
regime. GIS software has tools to operate with the linear and
point features, and geospatial data which simplifies modellers
live.

The EH model may encounter with some run-time issues which
rise from model spatial and temporal discretization. Data avail-
ability and larger computation resources lead more often to the
use of finer spatial resolution. It was noted in (Molnar, Julien,
2000) that raster grid cell size is interchangeable in the terms of
a spatial discretization if the model parameters were calibrated
on the model with the same raster grid size. Finer spatial resolu-
tion, in some cases, causes problems with a time discretization
and the time step size. Time step size is commonly controlled
with Courant–Friedrichs–Lewy (CFL) criterion (Courant et al.,
1928). CFL criterion forces the time step to decrease if: a) ve-
locity of flow process increases or; b) the spatial discretization
becomes finer. Maximum acceptable CFL value, which pre-
serves computation stability, theoretically equals one. For shal-
low surface processes (processes which take place in the used
model) CFL criterion should be even smaller than one as it was
noted in (Zhang, Cundy, 1989) or (Esteves et al., 2000). The
need for smaller than one CFL criterion is caused mainly by
the discrepancy between a solution (surface water height), cell
size and surface roughness coefficient or by sharp surface slope
changes between adjacent cells.

In the case of EH models, the commonly computed processes
are sheet and rill flow. The sheet flow covers the earth’s surface
evenly, whereas rill flow detaches the soil material and con-
centrates its flow in the created rill (therefore it is also called
concentrated flow). Although the concentrated rill flow is par-
ticularly fast (causing the time step size constraint) it usually
occupies a small portion of the area. The computation may end
up in a situation where a small portion of the computed area
demands a shorter time step (due to rill flow presence) whereas
the rest of the area allows larger time step. In that case, only
a small part of the computed area with developed rills causes
a long model run-time.

To summarize and outline the objectives of this manuscript. The
advantage of high-resolution geospatial data availability is con-
strained with an increasing computation demands of a calcula-
tion. In the case of this manuscript, the extremely short time
steps caused by the needs of CFL criterion is the main con-
cern. Not all computed processes need a shorter time step and
processes which are spatially limited (the concentrated flow in
rill). In other words, the whole basin computation run-time is
being increased due to a small part of the computed basin. One
way to overcome this problem is to use GPU or CPU-based
parallelization. In this manuscript, TensorFlow Python library
(Abadi et al., 2015) was tested to parallelize the EH model. Be-
sides the TensorFlow also a CPU-based parallelization is out-
lined. The testing was performed with the SMODERP2D EH
model. The model calculates the surface runoff and soil loss
processes with the use of GIS software for the data pre- and
postprocessing. GRASS GIS provider and QGIS plugin were
lately implemented in the SMODERP2D project, next to the
already existing Esri ArcGIS Toolbox. Those new features and
some of the principles used in the SMODERP2D model are also
presented in this manuscript.

2. MATERIAL AND METHODS

2.1 SMODERP2D model

The SMODERP2D model has been integrated in open source
GIS packages and tested for the GPU/CPU parallelization
within presented work. The model, which is now capable of
2D calculation, has been developed from the 1D profile ver-
sion (Holý, 1984). Description of the model follows.

The model has a simple structure based on the mass balance
equation:

Storage

∆t
= Inflow −Outflow (1)

where Storage represents surface water level h [L] which
changes each proceeding time during the computation. Inflow
and Outflow terms on the right-hand side of the equation (1)
represent the water flowing in and out the storage during the
time step ∆t and consist of several components. The Inflow
and Outflow of ith raster cell are defined as:

Inflowi = esi +

n∑
j

qj (2)

Outflowi = infi − qi − reti (3)

where es = effective precipitation [LT−1]
q = inflow to resp. outflow from a given cell [LT−1]
inf = infiltration [LT−1]
ret = surface retention for a given raster cell [LT−1]

The sum
∑n

j
in the expression (2) represents sum of all inflows

to the cell i. The flow direction and therefore the sum
∑n

j
is

controlled by D8 flow direction algorithm (O’Callaghan, Mark,
1984). Effective precipitation es is potential precipitation re-
duced by interception of the rainfall water on the vegetation.

The model is forced to satisfy the Courant–Friedrichs–Lewy
(CFL) criterion (Courant et al., 1928):

CFL =
qdt
dx

< 1.0 (4)

where dt = time step [T]
dx = grid cell size [L]

If the flow q is high, the model is forced to decrease the time
step in order to satisfy the CFL criterion, since a grid cell size
is fixed.

The flow q in the equations (2) and (3) has two components.
Slower and spatially extensive sheet flow qsh:

qsh = XIY hb (5)

where X,Y, b = empirical parameters [−]
I = surface slope [−]

and faster concentrated rill flow qrl calculated by the Mannings
formula:

qrl = A
1

n
R2/3I1/2 (6)

where A = cross-section area [L2]
n = roughness in the rill [TL−1/3]
R = hydraulic radii [L]

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

144

The resulting flow is a sum of sheet and rill flow:

q = qrl + qrl (7)

The sheet flow starts when the infiltration capacity is exceeded;
when rainfall is higher than infiltration. The rill flow emerges
if a critical water level of sheet flow is exceeded. The critical
water level is defined based on critical shear stress; when the
drag force of the flowing water becomes large than the cohesive
forces of the soil particles. From the definition, the sheet flow
does not occur all over the basin area. The rill flow is usually
presented to even lower extend. However, the CFL criterion is
more likely constrained by the rapid rill flow even though its it
occupy smaller area compared to sheet flow.

Infiltration is solved with Phillip’s infiltration equation (Philip,
1957):

inf = 1/2St−1/2 + Ks (8)

where S = sorptivity [LT 1/2]
Ks = saturated hydraulic conductivity [LT−1]

Parameters of relations (5) (6) and (8) are in the most cases spa-
tially distributed. It is therefore beneficial to incorporate GIS
packages in the modeling process.

2.2 SMODERP2D entering an open source world

SMODERP2D is the project with a long history. Over the years
its development has been driven by the Department of Land-
scape Water Conservation at the Czech Technical University in
Prague (see SMODERP2D logo in Figure 1). In 2018 SMOD-
ERP2D developers started working on a new generation of the
model in order to solve or at least to improve various critical
issues of the project. This includes most importantly the com-
putation stability and performance, better interoperability, and
lack of documentation. Recently SMODERP2D source code
has been published on GitHub (SMODERP2D Development
Team, 2019) under GNU GPL licence in order to attract a wider
audience, new developers and users.

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

\ \ / / / \ \ / \ / / / @ @ @ @ @ @

\ _\/ /_/ \ \/ \/ /_____/ @ @ @ @

__/ \ / ____/ @ @ @

____ \/ / @ @ @

_____/______/ @ @ @

\ @ @ @

____________________ @ @ @ @ @ @ @

Figure 1. ASCII-art SMODERP2D project logo

The model is implemented in Python programming language
using the object-oriented paradigm. The original source code
has been designed with a low level of scalability, limited read-
ability and interoperability. Part of the computation phase re-
sponsible for a data preprocessing was restricted to the sin-
gle platform only, Esri ArcGIS. In 2018 the original source
code has been completely refactorized. Python classes defining
computational steps were re-organized in a hierarchical manner.
Major design-related changes have been done in Python classes
responsible for data handling and preparation using GIS soft-
ware tools. Data preparation workflow is handled by a newly-
defined a base, partly abstract Python class (BaseProvider in
Figure 2). Functionality depending on the used GIS package

has been separated into new classes. This step was crucial in
order to make data preparation workflow GIS package indepen-
dent. The only supported platform, Esri ArcGIS, has been sep-
arated from the base workflow. Based on that, a new concept of
so-called GIS providers has been introduced, see Figure 2.

Figure 2. Concept of GIS providers (software dependencies
outlined by stereotypes)

Crucial is the separation of GIS functionality related code from
the generic workflow defined by the base provider. The base
provider depends only on standard builtin Python libraries.
Array-like computation is performed by a well-known NumPy
library. Using GIS provider prototypes, the SMODERP2D
project can be easily extended to support other GIS packages.
Currently, the SMODERP2D project comes with three differ-
ent GIS providers. Support for Esri ArcGIS platform is im-
plemented by ArcGISProvider, GRASS GIS is handled by
GrassGisProvider, see 2.2.1 for details. The CmdProvider

is triggered only when the model computation is run from
a command-line. In this case, it is assumed that the data prepa-
ration phase has been already performed by one of the sup-
ported GIS platforms.

Example of running computation from a command-line below.
Option –typecomp roff specifies that only model computation
without data preparation phase is triggered. It means that data
has been already preprocessed and stored in a pickle file dis-
tributed by a test.ini configuration file.

python ./bin/start-smoderp2d.py --typecomp roff \

--indata tests/test.ini

2.2.1 GRASS GIS integration SMODERP2D supported
GIS platforms have been recently extended by a new GRASS-
based GIS provider. Introducing an open source GIS platform
to SMODERP2D workflow is crucial from the perspective of
interoperability. SMODERP2D users can choose between a
proprietary Esri ArcGIS platform and an open source GRASS
GIS (Neteler et al., 2012). The GRASS GIS provider is de-
signed similarly to ArcGIS provider. From a Python perspec-
tive, there is only one difference, GIS functions are accessed by
PyGRASS package (Zambelli et al., 2013). Nevertheless, an in-
tegration of GRASS tools in the SMODERP2D project required
a few improvements in GRASS GIS itself. That was possible
since GRASS GIS is an open source project distributed under

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

145

GNU GPL licence. These improvements have been integrated
into main distribution and will be part of upcoming GRASS
GIS version 7.8. A GRASS v.to.points module (GRASS Devel-
opment Team, 2019b) has been extended to extract from lines
start or end nodes only. This functionality is used to determine
the slope of a polyline stream feature to ensure that its direc-
tion will always be downslope. Another improvement is re-
lated to a v.to.db GRASS module (GRASS Development Team,
2019a). This tool allows uploading geometry-related informa-
tion into the attribute table. Newly added option next edge al-
lows adding information about the next left and right edge based
on the segment orientation determined from surface slope. This
functionality is important for SMODERP2D in order to deter-
mine stream network correct connectivity as Figure 3 shows.

Figure 3. Stream segmentation procedure network connectivity

On the top of the GRASS GIS provider a specialized GRASS
r.smoderp2d module has been designed. This tool allows the
user running SMODERP2D model computation directly from
GRASS GIS working environment as demonstrated in Figure 4.
The module can be easily installed in GRASS GIS similarly
to other extensions (so-called addons modules) by g.extension
command. By default, the r.smoderp2d module performs data
preparation phase followed by model computation steps. Data
preparation only can be performed by -d flag. In this case, the
module creates a binary pickle file which can be later used for
a subsequent model computation. Note that ArcGIS Toolbox
also allows creating a pickle file for later usage. Importantly,
such pickle files are platform independent.

Figure 4. Running r.smoderp2d module from GRASS GIS
graphical user interface

r.smoderp2d command-line usage example:

r.smoderp2d elevation=w001001 soil=soil_map \

soil_type=Novak vegetation=soil_map \

vegetation_type=veg rainfall_file=rainfall.txt \

points=points2 table_soil_vegetation=tab_sv \

table_soil_vegetation_code=soilveg \

table_stream_shape=tab_stream_shape \

table_stream_shape_code=smoderp stream=stream

2.2.2 QGIS plugin Recently the SMODERP2D model has
been integrated also into QGIS environment. QGIS1 is a widely
used open source GIS platform which can be easily extended
by user-defined plugins. A SMODERP2D QGIS plugin al-
lows performing both data preparation and model computation
phases in QGIS native environment, see Figure 5. Data pre-
processing is ensured by GRASS GIS provider as described
in 2.2.1. Note that QGIS installation normally comes with
GRASS GIS included. It means that GRASS dependency is
solved by QGIS installation itself. Experimental code of the
plugin compatible with the current long term release QGIS
version 3.4 is available from the project GitHub repository
(SMODERP2D Development Team, 2019).

Figure 5. SMODERP2D model implemented as QGIS plugin

2.2.3 Python3 support SMODERP2D project also comes
with Python 3 support, but still supporting Python 2. Note
that Python versions 2 and 3 are not backwards compati-
ble. Python 3 support is important from various perspectives.
Python 2 is slowly reaching the end of life2, but still used by
many GIS platforms such as Esri ArcGIS 10.x. Newly sup-
ported GIS platforms by the SMODERP2D project as Esri
ArcGIS Pro, (upcoming) GRASS GIS 7.8 and QGIS 3.x are
Python 3 based. On the other hand it is still meaningful to
support both Python versions, Python 2 mainly because of Esri
ArcGIS 10.x platform.

Figure 6. SMODERP2D model available as ArcToolbox for Esri
ArcGIS 10.x and Pro platforms

1https://www.qgis.org
2https://legacy.python.org/dev/peps/pep-0373/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

146

2.3 Parallel computing experiments

Because one of the most crucial points of SMODERP2D com-
putations is the speed, an experimental branch allowing (both
CPU and GPU-based) parallelized computations has been de-
veloped.

The main step was to rewrite all loop-based computations into
matrix-based mathematical operations. To keep matrices as so-
called tensors and to perform all the operations, an open source
TensorFlow Python library (Abadi et al., 2015) developed by
Google Brain Team3 was used. Even though TensorFlow is
most widely used for machine learning and its performance on
basic mathematical operations is not always better than the one
of NumPy (a quick comparison with NumPy and Numba can be
seen in (Puget, 2015)), it had been preferred for its easy switch
between CPU and GPU-based core (it depends only on the ver-
sion of TensorFlow the user has installed, no needs for changes
in the code) and therefore support also for users without an ac-
cess to machines with GPU. Another advantage of TensorFlow
is its usage of so-called graphs. A graph is a representation of
all operations in dataflow/workflow. Its individual operations
are automatically sent to multiple cores in a CPU or multiple
threads in a GPU. These nodes are run independently in paral-
lel.

To support further development of TensorFlow and exploit its
bleeding edge functionalities, TensorFlow 2.0, which is pub-
lished currently just as an alpha version, was used in the
SMODERP2D experimental branch. Because TensorFlow 2.0
is still not suitable with all the Python acrobatic tricks, NumPy
was used for matrix operations in places where TensorFlow
could not (on places where loops were still needed; looping
through a NumPy array is incomparably faster than through
a Tensor).

This experimental SMODERP2D branch is still under develop-
ment; however, the alpha-version is ready to be used. Table 1
presents the results of different tests made on this version (com-
paring parallelized GPU computation, parallelized CPU com-
putation and a single CPU one).

As can be seen in the table, the usage of GPUs is not always
the right way even when compared with CPUs, both single and
parallelized ones. The bottleneck of TensorFlow is its graph
initialization; this step is very time-consuming and therefore
can last many times longer than the computation itself for ex-
tremely small data. Another bottleneck is the memory shift be-
tween RAM and GPU virtual memory which concludes into
slower processes for weaker GPUs (compared with parallelized
computations being run on CPUs). Generally, for data of com-
mon size was the process with parallelized computations faster
(reaching around 60 per cent of the total computation time on
different architectures). Interesting moment is slower run of
much stronger CPU4 when compared with weaker CPU2; this
behaviour has to be examined deeper.

2.3.1 Further ideas for a sub-basins based parallel com-
puting Besides the GPU-based parallelization (with Ten-
sorFlow (Abadi et al., 2015) or NVIDIA Cuda technol-
ogy (Kalyanapu et al., 2011, Le et al., 2015)) the pure CPU
parallelization may also bring a good improvement in the com-
putation time reduction. The computation domain is separated

3https://ai.google/research/teams/brain/

Table 1. Results of parallelization tests

RAM Processing unit Data 62 KB Data 197 MB
[s] [s]

15 GB
GPU1 4.0 7,560
CPU1 0.2 12,809
CPU2 2.1 7,249

251 GB
GPU2 2.5 6,611
CPU3 0.2 10,637
CPU4 1.5 8,631

Table 2. Used processing units

ID Model Clock speed Memory
GPU1 GeForce GTX 1060

3GB
33 MHz 3,016 MiB

GPU2 4× GeForce GTX
1080 Ti

33 MHz 11,178 MiB

CPU1 AMD Ryzen 7
1700 Eight Core
Processor

1.373 GHz 512 KB

CPU2 16× AMD Ryzen
7 1700 Eight Core
Processor

1.373 GHz 512 KB

CPU3 Intel Xeon CPU
E5-2630 v4

2.4 GHz 25,600 KB

CPU4 40× Intel Xeon
CPU E5-2630 v4

2.4 GHz 25,600 KB

into sub-domains based on a certain algorithm where each sub-
domain computation is loaded to a single CPU core. It is benefi-
cial to incorporate the hydrological behaviour in the paralleliza-
tion strategy if the domain is a hydrological basin. In (Vivoni
et al., 2011) the basin was separated in sub-basins based on
stream network. The sub-basins communicated with each other
through so-called ghost cell. The strategy aimed to generate as
few ghost cells as possible; to reduce the communication be-
tween the CPU cores.

The parallelization strategy outlined in the manuscript is based
on the hydrological reality and it is shown in a simplified setup
in Figure 7. In this example, the Nučice experimental catch-
ment was chosen to present the parallelization strategy. At
this 0.5 km2 large basin a long-term monitoring of erosion and
runoff processes is being conducted by the Dept. of Landscape
Water Conservation.

The strategy main goal is the reduction of the communication
between CPU-cores during the computation as much as possi-
ble. The whole basin is divided into several sub-basins based
on the digital elevation model and user-defined sub-basin size.
Outlet4 of each sub-basin is depicted with red dots in Figure 7.
After the sub-basins are defined, an order in which each sub-
basin will be computed is defined as follows. Sub-basins which
are hydrologically the farthest from the basin outlet (depicted
by the triangle in Figure 7) and therefore have no inflow flow
upslope area are calculated at first. Those sub-basins have the
rainfall stored in hyetographs as the only input. In the simpli-
fied setup shown in Figure 7, the sub-basins 1, 2, 3, and 6 are

4The location in the basin where all water from the basin flows

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

147

Figure 7. Simple example of possible CPU-based parallelization
strategy for the experimental catchment Nučice

calculated at first in parallel. The calculated hydrographs of
the sub-basins 1, 2, 3, and 6 are stored in the memory for the
later use. Sub-basins which have sub-basins 1, 2, 3, and 6 in
its upslope area are calculated next. It this case it is the only
the sub-basin 4. The water inputs in the sub-basin 4 are now
hyetograph and also hydrographs of upslope sub-basins 1 and
3. Next sub-basin to be calculated is the final sub-basin 5. In
this sub-basin is the outlet of the whole area. The water input
in the final sub-basin 5 are hyetograph and hydrographs of sub-
basins 2, 4 and 6. Once the main outlet hydrograph is obtained
the calculation stores the results and stops.

This approach may encounter several limitations. The main one
originates from the basin geometry. In the case of a narrow
basin situation (each sub-basin has a single upslope and downs-
lope sub-basin), the sub-basins will be computed in a sequence,
which loses the advantage of multi-core working station. If this
situation happens the user will be forced to create very small
sub-basins in order to be able to perform the outlined CPU par-
allelization. The possibilities of CPU parallelization described
in this section will be the subject of further research.

3. CONCLUSION

This manuscript presents SMODERP2D project and related re-
cently triggered development. SMODERP2D computational
tools have been successfully integrated into Esri ArcGIS,
GRASS GIS and QGIS desktop GIS platforms. On the top
of that, the concept of so-called GIS providers has been in-
troduced. Ongoing development is mainly focused on compu-
tational routines and parallel computation experiments. Also
OGC Web Processing Service providing SMODERP2D func-
tionality is planned to be established. All the tools are currently
distributed as experimental ready for testing and user feedback.
The official stable release of SMODERP2D model is planned
for 2020. This includes also user documentation which is cur-
rently under development.

In the case of SMODERP2D model, the run-time is an issue, es-
pecially if multiple mid-scale hydrological basins in fine spatial
resolution grid computation needs to be undertaken. The code
parallelization is a common practice in cases where the reduc-
tion of run-time is convenient or even necessary, therefore the
existence of the TensorFlow-based branch; and although this
branch is still under development, the reduction of the computa-
tion costs is already reaching up to 40 per cent depending on the
data and architecture. This experiment also shows that the par-
allelized branch should not be used as the default one, but an ad

hoc solution should be chosen depending on the data and avail-
able computing power. Even though the SMODERP2D model
does not belong in the family of forecasting models (where the
short run-time is necessary) the run-time speed up will increase
the usability of the model in practice and research applications.

SMODERP2D source code is available on GitHub (SMOD-
ERP2D Development Team, 2019) under GNU GPL licence.

ACKNOWLEDGEMENTS

The research has been supported by the research grants
TJ01000270, QK1910029, and internal CTU grant
SGS17/173/OHK1/T3/11.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. Tensor-
Flow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

Courant, R., Friedrichs, K., Lewy, H., 1928. Über die partiellen
Differenzengleichungen der mathematischen Physik. Mathe-
matische annalen, 100(1), 32–74.

Cronshey, R., 1986. Urban hydrology for small watersheds.
Technical report, US Dept. of Agriculture, Soil Conservation
Service, Engineering Division.

Esteves, M., Faucher, X., Galle, S., Vauclin, M., 2000. Over-
land flow and infiltration modelling for small plots during un-
steady rain: numerical results versus observed values. Journal
of hydrology, 228(3-4), 265–282.

GRASS Development Team, 2019a. v.to.db GRASS mod-
ule. Geographic Resources Analysis Support System (GRASS)
Software, Version 7.7. Open Source Geospatial Foundation.
https://grass.osgeo.org/grass77/manuals/v.to.db.html (2 June
2019).

GRASS Development Team, 2019b. v.to.points GRASS mod-
ule. Geographic Resources Analysis Support System (GRASS)
Software, Version 7.7. Open Source Geospatial Foundation.
https://grass.osgeo.org/grass77/manuals/v.to.points.html (2
June 2019).

Holý, M., 1984. Vztahy mezi povrchovým odtokem a trans-
portem živin v povodı́ vodárenských nádržı́ (dı́lčı́ zpráva
výzkumného úkolu VI 4 15/01 03/) (in czech). Technical report,
CTU in Prague, Prague.

Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R.,
Burian, S. J., 2011. Assessment of GPU computational en-
hancement to a 2D flood model. Environmental Modelling and
Software, 26(8), 1009–1016.

Le, P. V., Kumar, P., Valocchi, A. J., Dang, H. V., 2015. GPU-
based high-performance computing for integrated surface-sub-
surface flow modeling. Environmental Modelling and Software,
73, 1–13. http://dx.doi.org/10.1016/j.envsoft.2015.07.015.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

148

Molnar, D., Julien, P., 2000. Grid-size effects on surface runoff
modeling. Journal of Hydrologic Engineering, 5(1), 8–16.

Neteler, M., Bowman, M., Landa, M., Metz, M., 2012. GRASS
GIS: a multi-purpose Open Source GIS. Environmental Mod-
elling & Software, 31, 124–130.

O’Callaghan, J. F., Mark, D. M., 1984. The extraction of
drainage networks from digital elevation data. Computer Vision,
Graphics, and Image Processing, 28(3), 323 - 344.

Philip, J., 1957. The theory of infiltration: 1. The infiltration
equation and its solution. Soil science, 83(5), 345–358.

Puget, J., 2015. How to quickly compute the man-
delbrot set in python. IBM Community Blog.
https://www.ibm.com/developerworks/community/blogs/jfp/en-
try/How To Compute Mandelbrodt Set Quickly?lang=en (4
June 2019).

Renard, K. G., Foster, G. R., Weesies, G., McCool, D., Yo-
der, D. et al., 1997. Predicting soil erosion by water: a guide
to conservation planning with the Revised Universal Soil Loss
Equation (RUSLE). 703, United States Department of Agricul-
ture Washington, DC.

SMODERP2D Development Team, 2019. SMOD-
ERP2D GitHub repository. https://github.com/storm-fsv-
cvut/smoderp2d (2 June 2019).

Vivoni, E. R., Mascaro, G., Mniszewski, S., Fasel, P., Springer,
E. P., Ivanov, V. Y., Bras, R. L., 2011. Real-world hydrologic
assessment of a fully-distributed hydrological model in a par-
allel computing environment. Journal of Hydrology, 409(1-2),
483–496. http://dx.doi.org/10.1016/j.jhydrol.2011.08.053.

Wischmeier, W. H., Smith, D. D. et al., 1978. Predicting rain-
fall erosion losses-a guide to conservation planning. Predicting
rainfall erosion losses-a guide to conservation planning.

Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An
Object Oriented Python Application Programming Inter-
face (API) for Geographic Resources Analysis Support Sys-
tem (GRASS) Geographic Information System (GIS). IS-
PRS International Journal of Geo-Information, 2(1), 201–219.
https://www.mdpi.com/2220-9964/2/1/201.

Zhang, W., Cundy, T. W., 1989. Modeling of two-dimensional
overland flow. Water Resources Research, 25(9), 2019–2035.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-143-2019 | © Authors 2019. CC BY 4.0 License.

149

