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ABSTRACT:

The Walloon region of Belgium has launched a research project that aims at elaborating a methodology for automated, high-quality
land cover mapping,  based primarily on its yearly 0.25m orthophoto coverage. Whereas in urban areas an object-based (OBIA)
approach  has  been  the  privileged  path  in  the  last  years  as  it  allows  taking  into  account  shape  information  relevant  for  the
characterization of man-made constructions, such an approach has its limits in the rural and more natural areas due to increased
difficulties  for  segmentation  and  less  sharp  boundaries,  thus  calling  for  a  pixel-based  approach.  The  project  thus  consists  in
developing a combination of methods, and to integrate their results through an ensemble fusion approach. As many of the more
natural land cover classes have temporal profiles which cannot be detected in a one-date orthoimage, Sentinel 1 and 2 data are also
included in order to take advantage of their higher spectral and temporal resolution. All methods are trained using existing regional
databases. In a second step, we combine the different LC classification results by fusioning them into one high-accuracy (over 90%
OA) product, using a series of different approaches ranging from rule-based to machine learning to the Dempster-Shafer method.
The entire toolchain is based on  free and open source software,  mainly GRASS GIS and Orfeo ToolBox.  Results indicate the
importance of the quality of the individual classifications for the fusion results and justify the choice of combining OBIA and pixel-
based approaches in order to avoid the pitfalls of each.

1. INTRODUCTION

Land cover (LC) maps, showing the characteristics of surface
elements, e.g. vegetation, artificial constructions, water, etc, are
essential components for regional decision-making, for uses as
diverse  as  spatial  planning,  environmental  monitoring  and
modelling, flood risk assessment, etc.

Even though the Walloon  region  in  Belgium has compiled a
rich catalogue of vector geodata, the actual LC map currently
available  dates  back  over  a  decade  and  an  update  was  thus
needed.  The  regional  administration  decided  to  launch  a
research project to develop a robust, automatized, scalable and
reproducible method for creating these data, mainly based on
the available  VIS-NIR orthoimagery at  0.25  m resolution,  as
well  as  height  information  derived  through  photogrammetry
from the raw version of that same imagery. The ultimate aim of
the  project  is  not  only  to  provide  recent  (2018),  INSPIRE-
compliant  maps,  but  also  to  elaborate  a  method  that  would
make it easier for the region to reproduce such data at higher
temporal frequency than in the past, ideally based on FOSS4G
software in order to avoid vendor lock-in and licence costs. As
a response  to  the  need  for  high  accuracy  in  very diversified
landscapes,  from densely  urbanized  areas  to  large  forests,  a
combination of approaches was chosen.

This paper details the preliminary outputs of the work, which is
still in progress. We begin with a very short  overview of the
current  state-of-the-art  in  LC  mapping,  to  then  go  on  to
describing  the  data,  methods  and  intermediate  results,  before
discussing the lessons already learned.

2. STATE OF THE ART

2.1 Different approaches to LC mapping

Because of its importance for many different fields, land cover
mapping  has  attracted  a  lot  of  attention  from  the  research
community. Starting with simple pixel-based approaches based
on  low resolution  satellite  images  available  at  the  time,  the
advent of very high resolution (VHR) imagery has led to the
development of object-based approaches, notably for man-made
landscapes  such  as  urban  areas  (Blaschke  2010;  Chen  et  al.
2018).  However,  with more and more open  data available  at
global  scale,  particularly  the  Landsat  and  Sentinel  satellites,
pixel-based  methods  continue  to  attract  attention  and
development  (Grekousis,  Mountrakis,  and  Kavouras  2015).
Such approaches as also particularly used in the environmental
sciences community, for example in the work concerning local
climate zones (Stewart and Oke 2012; Bechtel et al. 2015),  the
ESA climate change initiative (Bontemps et al. 2012; Hollmann
et al. 2013) or crop mapping (Inglada et al. 2015).

Another,  new actor  is  deep  learning  which  has  shown  very
promising  results  for  land  cover  mapping  (Zhu  et  al.  2017;
Zhang, Zhang, and Du 2016). Deep learning is, however, seen
by many as a “black box”, making it difficult to use in public
decision-making  which  requires  accountability  (Dosilovic,
Brcic, and Hlupic 2018; Samek, Wiegand,  and Müller 2017).
This black box  character,  leading to  more difficulties  for the
administration to assess and accept the proposed processes than
classic, well-known methods, was one of the main reasons not
to use deep learning in this project.
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3. DEFINITION OF USER NEEDS AND OBJECTIVES

An important part of the project, although not treated in detail
here is the work with users in order to identify and prioritize
their needs (Beaumont et al. 2019). This includes the definition
of a legend for the final land cover product. As Figure 1 shows,
a legend with 6 main classes has been designed, with two of the
main classes subdivided into two subclasses each. One of the
classes, arable land, was difficult to define because it combines
two  land  cover  types  in  time  (bare  soil  and  herbaceous
vegetation  within  the same year).  This  can obviously  not  be
detected with single-date imagery, calling for the use of images
of higher temporal resolution, but lower spatial resolution such
as Sentinel 1 and 2.

Beyond  the  legend,  other  issues  need  to  be  balanced  when
working  on  such  land  cover  maps:  the  necessary  level  of
accuracy,  the  temporal  resolution  and  the  minimum  size  of
objects in the map (minimum mapping unit or MMU). In order
to identify acceptable trade-offs, users were asked to allocate a
limited  budget  of  points  to  these  three  objectives.  Figure  2
shows the result of this consultation, including the contradictory
needs. As a general conclusion,  it  was decided to aim for an
MMU of 15m2 (possibly to be adapted according to classes), a
frequency of  update  between 3 and 5 years,  and a minimum
overall accuracy of the product over 85%. As this first round of
mapping  should  provide  a  very  solid  baseline  for  future
updates, the team has proposed to aim for a much higher overall
accuracy (around 95%).

Figure 2: Compromises between objectives as preferred by
users

4. DATA

Different sources of data are available on the study area. Each
has its own spatial reference and specific feature for the land
cover classification. The main input is a mosaic of orthophoto
images with 25 cm pixels and 4 spectral bands (NIR-Red-Green
and Blue). The study area was covered thanks to several flights
in  spring  and  summer  2018.  The  data  provider  also  used
photogrammetry  to  build  a  digital  surface  model  from  the
original photographs. A digital height model was then derived
by subtracting a 1m resolution LIDAR-based digital elevation

model  from  2013.  Beside  the  very  high  resolution  airborne
datasets, images from Sentinel-1 (10 m C-Band SAR data) and
Sentinel-2 (10 and 20 m multispectral data) are used to analyze
the temporal dynamic of the land cover. Finally,  a 2 m open
data land cover layer from the Lifewatch project (Radoux et al.
2019) is used for training, as well as a vector database of roads,
railways  and  rivers  provided  by  the  Walloon  Region.  This
vector database was enhanced into a planimetric reference : a
linear roads dataset and three planimetric datasets for railways,
buildings  and rivers.  From the linear ancillary data,  the road
network was completed and made continuous using toolboxes
from  the  open  source  platform  QGIS  and  GRASS  GIS.  In
particular, the linear referencing toolbox from QGIS was used
to solve completeness issues in a road dataset.
 

5. METHODS

The  methods  used  were  chosen  based  on  an  ensemble  of
criteria:

• Reflecting the state-of-the-art
• Ease of application for a regional administration
• Scalability  for  very large datasets (the input  data is

several TB)
• Potential for automation of the entire procedure
• Existing experience in the research teams

5.1 Per pixel approach using Orfeo ToolBox

Orfeo  ToolBox  (OTB)  is  a  C++  library  for  state  of  the  art
remote sensing (Grizonnet et al. 2017). All of the algorithms are
accessible from Monteverdi, QGIS, Python, the command line
or C++. OTB is also the core of the SEN2AGRI toolbox (http://
www.esa-sen2agri.org/), an image processing platform used in
this study for the classification of crop types based on Sentinel-
2 images. Due to the large size of the orthophotos, command
lines are managed by the SLURM job scheduling system. The
parallel  processing  is  driven  by  zones  of  similar  flight
conditions according to the metadata of the orthophotos. 

The  first  step  of  the  processing  consists  in  smoothing  the
orthophotos based on the meanshift algorithm (Comaniciu and
Meer 2002) in order to reduce potential salt and pepper effects.
A reference dataset is then built  based on the 2 m land cover
map, the MNH and the shadows predicted from the MNS with a
custom OTB application. This reference dataset is then eroded
using a multiclass mathematical morphology operator (Radoux
et al. 2014). The orthophotos are then classified with an a priori
probability defined by the height class. In addition,  a random
forest classifier was applied on a stack of two dates (leaves on
and leaves off) of Sentinel-2 images. This classification focuses
on  the  discrimination  of  forest  types  to  better  discriminate
between  broadleaved  deciduous  and  needle-leaved  evergreen
forests,  as  well  as  larch  stands  which  are  deciduous  needle-
leaved trees.

5.2 OBIA approach using GRASS GIS

GRASS GIS is a full-fledged geographical information system
(Neteler  et  al.  2012),  grown  over  35  years  of  continuous
development.  The  OBIA  approach  used  here  is  based  on  a
complete  toolchain  developed  during  the  last  years  which
provides everything from segmentation (including unsupervised
parameter optimization) to machine learning classifiers (Grippa
et al. 2017). All tools have been specifically designed for very
large data sets, allowing parallel computing. A previous project
already allowed a first test of this toolchain on a small part of
the Walloon territory (Beaumont et al. 2017).

Figure 1: Landcover legend defined after user consultation
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Recent studies have shown that using a constant segmentation
parameter  across  space  does  not  lead  to  ideal  segments,  as
spatial structures differ significantly between different parts of
the territory (Grippa et al. 2017; Georganos et al. 2018; Drăguţ
et al.  2019). The OBIA approach in this study takes this into
account  by  optimizing  the  segmentation  within  fairly  small
tiles, delineated using a module for the creation of semantically
useful cutlines (Lennert  and GRASS GIS Development Team
2018), inspired by the work of Soares et al (2016). In order to
speed up the region-growing segmentation, superpixels are first
created in a rapid run of the SLIC algorithm (Kanavath, Metz,
and  GRASS  GIS  Development  Team  2018;  Achanta  et  al.
2012).

After segmentation,  diverse statistics (spectral,  shape, texture,
height,  x  and  y  coordinates)  are  gathered  for  each  segment,
including  information  about  the  segments  neighbours.  Using
the existing vector databases, segments falling into polygons of
specific  classes  are  identified  automatically  as  training
segments.  Outliers  (e.g.  segments  identified  as  artificial
construction which have a tree growing over them in the image)
are eliminated through simple tests mainly based on NDVI and
height.

The data set is divided into strata according to the date at which
the photos  were taken.  A subsample of  the very large set  of
training segments is then used to train a different random forest
model on each of the strata and the resulting models applied on
each  strata’s  tiles,  resulting  in  a  choice  of  class  for  each
segment,  as well  as the probability  of  each class.  The OBIA
approach focuses specifically on the quality of the classification
of more man-made landscapes, for which it is particularly well
suited.

5.3 Data fusion

We test three different approaches for the fusion of the raw LC
maps into one final automated product.  A set of 1500 points
labelled  by  visual  interpretation  and  stratified  in  3  strata  to
cover  different  types  of  mismatches  between  the  input
classifications, is used as a reference for training and validation.
At the time of writing, this fusion is still in progress, and only
preliminary results are presented here.  Beyond ongoing work
on  the  different  input  classifications,  we  are  currently
elaborating an enhanced point dataset in order to improve the
model training.

5.3.1 Dempster-Shafer

The different classification results and the clean vector database
are fused at the pixel level based on the Dempster-Shafer fusion
(Ran et al. 2012). This method combines masses of belief based
on  the  confusion  matrix  of  each  classification.  The  mass  of
belief indicates the belief of each input classification present for
each label value based on  a reference dataset.  The confusion
matrix is computed independently for three strata selected based
on  the  likelihood  of  mislabelling.  For  each  strata  in  the
reference point data set, a specific fusion is computed and the
three results are merged by an ultimate Dempster-Shafer fusion
based on the entire set of points. 

5.3.2 Object-based machine learning

The  fusion  in  this  approach  is  based  on  the  objects  created
through  the OBIA classification.  For  each of  these objects  a
series of features are extracted from the different classification

attempts  such as  entropy-based analysis  of  class probabilities
from both the per-pixel and the OBIA results, class proportions
within each object from the pixel-based results, modal classes
of  the  Sentinel-based  results  as  well  as  modal  classes  from
binary version of the ancillary vector datasets.

Using  the  reference  points  a  random forest  classifier  is  then
trained to predict classes for the objects.

5.3.3 Rule-based

The rule-based approach is built interactively based on expert
assessment  via  visual  interpretation.  It  currently  comprises
about  15  conditional,  pixel-based  rules.  For  each  pixel
(25x25cm), LC is attributed taking into account the agreement
between  the  two  ortho-image  classifications,  the  presence-
absence within ancillary reference datasets and contextual rules.
The  Sentinel-based  classifications  (time-series)  and  digital
height model serve as support for the LC allocation of complex
remaining pixels.

Knowing that such as rule-based approach requires significant
investment  of  human resources to  arrive at  satisfying  results
over a very large territory, we mainly consider it as a reference
application which allows us to benchmark the other approaches.

6. RESULTS

6.1 Results of different classifications

In this  section  we present  a  small  selection  of  results  of  the
VHR pixel-based and OBIA approaches in  order  to  illustrate
some difficulties in each. Figure 3 shows some typical issues of
pixel-based approaches: on the left, one can clearly see the salt-
and-pepper  effect  linked  to  the high  variability  of  individual
spectral signatures, while the extract on the right illustrates the
high sensitivity to the quality (and spatial precision) of the input
data, in this case the height information which does not have the
same  precision  as  the  spectral  data,  and  is  slightly  spatially
shifted.

While  objects  resulting  from an OBIA approach  often  allow
mitigating  the  issue  of  high  variability  of  individual  pixel-
values by using means or other aggregated statistics, figure  4
illustrates  quite  well  a  fundamental  issue  with  object-based
approaches in very heterogeneous environments such as forests.
Objects in these regions are often too small, increasing the risk
of misclassification.

Figure 5 reinforces this idea by showing that objects which are
not as easily segmented as buildings have a higher uncertainty
in  their  classification  results.  At  the  same  time,  the  figure
demonstrates  the  usefulness  of  the  OBIA  technique  for
delineating man-made structures fairly precisely.

Figure 3: Illustration of issues in the pixel-based classification
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Figure 4: Illustration of over-segmentation in the OBIA
approach

Figure 5: Illustration of uncertainty linked to object type in
OBIA (darker color = higher uncertainty)

6.2 Results of fusion

As mentioned above, the work on fusion is still ongoing,  but
some first results already are available and allow for an initial
analysis  of  the  advantages  or  disadvantages  of  the  different
approaches, as illustrated in figures  6-9  (see figure  1 for the
legend).

A  major  difference  can  be  seen  between  the  object-based,
machine learning approach and the two others is the fact that
just as in the initial classification, the objects provide a certain
smoothing effect, while ensuring sharper edges for man-made
constructions.  The  Dempster-Shafer  approach  has  difficulties
dealing with the different resolutions and thus leads to a less
spatially precise result, although thematically it sometimes does
a better job identifying the right classes.

One class which is difficult to deal with in the entire processing
chain is arable land. As the VHR classifications are limited to
one  point  in  time,  this  information  can  only  come from the
Sentinel-derived  classifications  which  have  much  lower
resolution.

6.3 Discussion

The above results show that fusion clearly provides qualitative
improvements  over  the  individual  classifications.  However,  a
major determinant of the quality of results is the accuracy of the
inputs into the fusion. This is why the team adopted an iterative
approach,  going  back  and  forth  between  fusion  and  original
classification  in  order  to  identify  the best parameters  at  each
step.

Figure 7: Object-based fusion using machine learning (for
legend see figure 1)

Figure 8: Rule-based fusion ((for legend see figure 1)

Figure 6: Original orthophoto
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Giving  priority  to  the  ancillary  reference  datasets  provides
smoother maps for these features, but strongly depends on the
timeliness  of  their  content  (e.g.  lots  of  omission/commission
errors if not up to date, such as for the building layer). This is
somewhat  of  a  chicken-and-egg  problem,  as  a  procedure  for
elaborating a high quality LC map depends on up-to-date input,
while potentially being one of the prime sources of such up-to-
date information.

As  expected,  the  rule-based  approach  is  time-consuming,
notably  for  the  parametrization  of  the  rules,  as  well  as
subjective, so it is difficult to implement in an automated setting
across a large territory.

7. CONCLUSION AND PERSPECTIVES

While  the precise details of classification and fusion are still
work in progress, we can already clearly see that using multiple
data, classifying them through different methods and combining
them  in  a  final  fusion  step  leads  to  better  results  than  the
individual methods on their own. The results seem on par with
the  precision  level  expected  by  the  potential  users,  and  the
entire processing chain can potentially be in-housed within the
administration  as  it  relies  entirely  on  free  and  open  source
software and simple scripts  that  ensure complete automation.
The final LC map will be made available as open data through
the Walloon region’s geoportal.

An important aspect of the project for the FOSS4G community
is  the  fact  that  it  has  allowed  continuous  improvement  of
existing  tools.  Some  GRASS  GIS  modules  were  enhanced
during  the  project  (e.g.  i.segment.uspo,  i.segment.stats,
i.cutlines, v.class.mlR), with all enhancements integrated back
into the software’s source code. Some new modules were also
developed  (e.g.  r.texture.tiled)  and  are  now available  for  the
entire community. This clearly shows the advantage for public
administrations  to  fund  projects  based  on  FOSS4G  as  all
developments will continue to be available, including to other
parts of the administration, thus providing a potential effect of
pooling of public resources.

Within the project itself work will continue in order to finalize
the  automated  LC  map.  A  period  of  manual  corrections  is
foreseen in order to create one extremely high quality base map
which can provide the foundation of a high frequency update
cycle of  LC maps in  Wallonia.  Furthermore,  the project  will
integrate LC information as attribute data into existing regional
vector databases, thus supporting easier uptake of the data by

different user communities, and a combination of the LC map
with existing alpha-numeric, geocoded, databases will provide
input into automated land use (LU) mapping.

Future  research will  have to  confront  the methods developed
here  to  new  developments,  notably  in  deep  learning.  As
mentioned  in  the  literature  review,  some  elements  of  deep
learning  make  it  less  attractive  to  public  administrations.
However,  the  very  high  quality  LC map coming  out  of  this
project has the potential to provide useful input for the training
of  deep  learning  networks,  possibly  maintained  within  the
administration for future needs. Although this will  require an
effort  to  make  the  entire  process  less  black  box,  it  has  the
potential of providing the administration with a potent tool for
frequent updating.
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APPENDIX

All  scripts  used  for  the  OBIA part  of  the  project  are  made
available on https://github.com/mlennert/WALOUS.
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