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ABSTRACT:

Satellite imagery from earth observation missions enable processing big data to gather information about the world. Automatizing
the creation of maps that reflect ground truth is a desirable outcome that would aid decision makers to take adequate actions in
alignment with the United Nations Sustainable Development Goals. In order to harness the power that the availability of the new
generation of satellites enable, it is necessary to implement techniques capable of handling annotations for the massive volume
and variability of high spatial resolution imagery for further processing. However, the availability of public datasets for training
machine learning models for image segmentation plays an important role for scalability.
This work focuses on bridging remote sensing and computer vision by providing an open source based pipeline for generating
machine learning training datasets for road detection in an area of interest. The proposed pipeline addresses road detection as a
binary classification problem using road annotations existing in OpenStreetMap for creating masks. For this case study, Planet
images of 3m resolution are used for creating a training dataset for road detection in Kenya.

1. INTRODUCTION

The overall growth of generated data has propelled the renais-
sance of Artificial Intelligence (AI) for new approaches to solve
problems in different areas. The increased availability of high
resolution satellite imagery in recent years, enabled earth obser-
vation analysis in ways that were not possible before. Among
the many possibilities, identifying features automatically from
remote sensing imagery (RS) is an important task to take ad-
vantage of this data for updating existing maps.

Using satellite imagery for automatic road detection is of ut-
most importance for map-making; however, access to high res-
olution images, pre-processing and the lack of annotated masks
ready to use in Machine Learning models (ML) play an import-
ant role for scalability. (Demir et al., 2018) state that “satellite
images are only recently gaining attention from the [computer
vision] community for map composition”. In (Demir et al.,
2018) is presented the DeepGlobe 2018 challenge, urging com-
petitors for ML models to “parse the earth through satellite im-
ages”, identifying roads among other features. The challenge
provides the dataset ready to use; however, this behavior often
present in challenges, inevitably biases the creation of the mod-
els to work with the provided images; the models will learn
patterns of the cities depicted in the training dataset, neglecting
other areas of the world that were not included, specially those
with a significantly different landscape.

The task of providing the necessary training datasets requires
bridging knowledge from computer vision as well as RS pro-
cessing; there needs to be a methodology that enables the com-
puter vision community to obtain datasets ready to use for ML
models from anywhere in the world.
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In order to address the lack of annotated datasets for solving
hard problems with ML, a pipeline is presented to generate
annotated masks for road detection. The proposed pipeline is
built with pyQGIS, using the Overpass API to consume Open-
StreetMap (OSM) data for an area of interest. This process may
produce masks with some inaccuracy as opposed to human la-
belling, but with the possibility of generating a high volume
of training data. Even if road extraction is not perfect due
to challenging surroundings in the images, like dry rivers that
can be confused with unpaved roads, the identification of roads
through ML serves also to direct a human mapper focus on spe-
cific areas in the imagery to map.

1.1 Case Study

For this paper, a methodology that enables the creation of a
dataset for training a ML model for road detection in Kenya is
intended. Kenya was selected due to its challenging landscape
for identifying roads, many of which are unpaved. These roads
when seen from an aerial image are hard to identify for the hu-
man eye, even more when contrasted with bare soil or dry rivers
due to seasonality, making labelling a complex task.

For this case study the creation of the training dataset is decisive
in what the model will learn, other road detection models might
not work due to the different landscape characteristics of Kenya.

The lack of extensive, accessible, and authoritative data sources
is also a drawback in this area, being OSM and satellite imagery
the most reliable ones.

To illustrate the proposed methodology for the creation of an-
notated masks, some steps in the pipeline as well as the selec-
tion of the data sources were considered in particular for the
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case study scenario to obtain better results, even though other
general solutions like RoboSat1 are available.

1.2 Related Work

The term ML refers to the study of algorithms and statistical
models that enable computers to perform a specific task without
explicit instructions, but to be more specific, the task of road de-
tection, as it is image recognition, is better addressed by Deep
Learning (DL) algorithms. These are part of ML, but in particu-
lar, DL algorithms are the ones that “allow computational mod-
els that are composed of multiple processing layers to learn rep-
resentations of data with multiple levels of abstraction” accord-
ing to (LeCun et al., 2015). DL models use the backpropaga-
tion algorithm through the layers of a neural network to better
adjust the model parameters. DL algorithms are usually convo-
lutional neural networks composed by many layers, (LeCun et
al., 2015) states that the key aspect of DL is that these layers of
features are not designed by human engineers, they are learned
from data using a general-purpose learning procedure.

Road detection with ML is not trivial due to the diverse shape of
the roads as stated in (Schweitzer, Agrawal, 2019), the subject
has nevertheless been studied before and has recently gained
more attention due to the raise in computational power for com-
puter vision algorithms.

Road detection studies have focused on the architecture for the
model, in most cases using neural networks (Mokhtarzade,
Zoej, 2007) or more recently, convolutional neural networks as
in (Schweitzer, Agrawal, 2019) where authors use a synthetic
aerial dataset for emulating the dessert. Successful trials have
mostly been done with cities that have paved roads and with
very high resolution imagery e.g. National Agriculture Imagery
Program (NAIP) or images with masks provided in challenges
(Demir et al., 2018).

Paved roads produce a high contrast against their surroundings,
facilitating their detection. For this case study, on the contrary,
unpaved roads in Kenya are easily confused with bare soil or
dry rivers due to the similar reflectance and it is not trivial to
differentiate from one another.

2. DATA COLLECTION AND PRE-PROCESSING

In order to generate binary masks for road detection, two main
sources are needed: RS imagery and road topology. The fol-
lowing subsections will depict why the selected sources were
chosen but also noting that another kind of imagery is possible
to use with the proposed pipeline while analysing other areas.

2.1 Satellite Imagery

The new generation of satellites produce periodical high resol-
ution imagery from the world. This periodical data is useful for
training ML models for inferences about specific areas, consid-
ering not only one image per area but many in order to generate
training data for different seasons. In the context of our case
study, this comes useful, since producing a time series training
dataset for each area of interest, aids in establishing a baseline
to handle the seasonality of roads; including images for mon-
soon as well as draught periods, and also to produce a larger
training dataset.

1RoboSat - https://github.com/mapbox/robosat

High resolution images are necessary for identifying features
for mapping; specifically features in artificial land, like roads.
Among the available possibilities for satellite imagery, Planet
offers limited downloads of 3m resolution satellite imagery for
research purposes; this is the highest resolution available for
free from a satellite. There are also other alternatives, like
drone aerial images available from OpenAerialMap, but this
source is not as complete and not enough for the case study,
even though the resolution is higher. For these reasons, Planet
imagery (Daily Satellite Imagery and Insights — Planet, n.d.)
will be used in the the case study.

Images are filtered from Planet using a bounding box for an
area of interest to use the ones with less cloud coverage (about
15%), while allowing to query as well different time periods
for the same area. In this way 2 composites for each area of
interest are included for creating the training dataset. The size
of the area of interest will determine the number of tiles that
will be generated for the model. For this work, 3 towns were
considered, therefore, 3 bounding boxes were used to filter the
satellite images and 6 composites were produced from them in
order to consider the seasonality of the roads.

2.2 OpenStreetMap Road Data

The OSM platform serves as a rich source of data that can
be used for creating annotated masks for road detection. The
crowd-sourced geospatial road data is sometimes the only
national-level source available for some countries according to
(Barrington-Leigh, Millard-Ball, 2017).

There have been plenty of research directed toward the assess-
ment of the OSM road networks, focusing on positional accur-
acy and completeness. The first studies were done in 2009, in
their works (Ather, 2009), (Haklay et al., 2010) and (Kouko-
letsos et al., 2011) assessed the positional accuracy of OSM
roads in England with a visual comparison of a limited number
of roads with an authoritative dataset and a statistical approach
based in the work of (Goodchild, Hunter, 1997). In order to
obtain the completeness of the dataset covering England, the
authors compared the lengths of the roads in OSM with those
of the Ordnance Survey vector datasets. (Kounadi, 2009) did
a similar experiment in Athens, where he considered around
300 roads and found that an average difference between OSM
and official roads of about 6m and an average overlap of nearly
80%, which is in line with what Haklay concluded.

After some years, other studies were done based on the buffer
zone methodology (Koukoletsos et al., 2012), (Zielstra, Zipf,
2010), (Wang et al., 2013), (Siebritz, Sithole, 2014), (Graser
et al., 2014). The studies show different results for different
areas included in the experiments. In Europe mostly, the spatial
accuracy and the completeness were good enough, while for
places like South Africa, the dataset did not meet the accuracy
requirements for the integration with the authoritative database.

In (Helbich et al., 2012), authors did a case study of a German
city, they found that areas with high accuracy of OSM were
primarily located in higher populated parts of the city, and con-
cluding that these areas were subject to more frequent valida-
tion, followed by correction of errors, than rural areas.

In (Brovelli et al., 2016) and (Brovelli et al., 2017), authors in-
troduced an automatic method based on geometrical similarity
and a grid-based approach for the evaluation of road complete-
ness and positional accuracy. The procedure demonstrated that
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OSM is a reliable source for Paris and it is flexible enough to
be reused in other cities.

In (Girres, Touya, 2010), features representing the same ob-
ject in the OSM and authoritative datasets were selected and
matched manually to avoid errors. Differences in position were
then computed on each pair of homologous objects. While the
mean distance was acceptable, the standard deviation was larger
than the reference accuracy used for official datasets, showing
heterogeneity in the quality of the data. Regarding complete-
ness, the authors found that using as an indicator the number of
objects, OSM was complete only by around 10%; however, the
completeness improved when they considered the comparison
between the total length/area of the objects, obtaining an aver-
age value around 40%. This result shows that shorter objects are
more likely to be absent, suggesting that volunteer contributors
tend to map the most important elements in the road network.

In (Jovanovic et al., 2019) is stated that in developing coun-
tries, OSM is usually the most complete source. They per-
formed studies for the case of Kenya, where after perform-
ing a completeness and positional accuracy analysis against the
Road dataset published by Digital Chart of the World (DWC)
provided by the United Nations Economic Commission for
Africa and Global Roads published by Columbia Universitys
and provided by the Centre for International Earth Science In-
formation Network (CIESIN), OSM proved to be more reliable
with a 4.5 ratio against DWC and a ratio of 2.5 against CIESIN.
Authors in (Jovanovic et al., 2019) go further and state that
OSM also proved to have more positional accuracy in Kenya
when compared to the mentioned datasets.

2.3 Pre-Processing

Satellite imagery was obtained from Planet and processed with
Google Earth Engine to generate rendered composites as the
one in Figure 1. For this, each image obtained from Planet
for the area of interest was uploaded as a Google Earth Engine
(GEE) asset (since Planet is not yet a GEE source) and loaded
as an ImageCollection for visualization and export as a single
composite. Planet imagery has 4 bands, with the first 3 corres-
ponding to blue, green, and red; the order and the bands to use
while processing was: b3, b2, b1.

In order to produce the composites from Planet images, min-
imum and maximum statistics were calculated for each band
to adjust visualization parameters. The gamma value used was
1.5, 1.3, 1.3 for each BGR band, respectively. The javascript
code for this processing is available in the github page for this
project2.

The composite then serves to generate smaller tiles like the one
seen in Figure 2, that can be used in a ML model, since the com-
plete raster may not be processed at once. For this, the zoom
level 16 was used for running the gdal2tiles command, but a
different zoom level is possible to use in the script. This will
ensure that the same tiles are generated for the composite as
well as for the mask while obtaining a good detail from both.
The composite needs to be saved as a rendered raster and pro-
jected to pseudo mercator before running this command. The
structure of the file directory output can then serve to easily
identify which areas contain roads in the map in order to direct
mappers attention to them.

2osm2mask - https://github.com/mazucci/osm2mask

Figure 1. Sample of a rendered composite

Figure 2. Sample of a rendered composite tile

While generating the tiles there may be some cases in which
the image does not fill the entire tile size near the corners of the
composite. In these cases, smaller tiles like seen in Figure 3 are
generated to avoid creating the corresponding masks with false
information, i.e. having 0 values where no data is present.

Satellite imagery available directly from GEE may be used for
other ML inferences that require less spatial resolution, facilit-
ating access to images and allowing a high volume of compos-
ites to be generated with less user interaction.

3. OSM2MASK

3.1 Annotated Masks

The OSM data model for representing map objects is made of
geometries with attributes that describe them. These geometries
can be ways, nodes or relations. Ways are represented as lines,
nodes are points, and relations are a collection of points or ways
that represent a larger whole. Attributes are described as tags
that can be part of a node, a way or a relation.

In Western Africa, where Kenya is located, the classification
of roads for adding attributes in OSM is as explained in (East
Africa Tagging Guidelines - OpenStreetMap Wiki, n.d.). The

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019 
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W14-255-2019 | © Authors 2019. CC BY 4.0 License.

 
257



Figure 3. Sample of a rendered cropped tile near the bounds of
the composite

document outlines what each attribute given to any way rep-
resents; this is useful for considering the width for each kind
of road for generating the masks. Within the possible tags,
there are some that can help identify highways, which are wider,
these are: trunk, primary, secondary, and tertiary. Tags belong-
ing to unclassified, residential, service, track, path or private
access are considered minor roads and given the smaller width.

For the pipeline, some considerations were made in order to ad-
apt the annotated masks from OSM data to match the satellite
images as close as possible in the area of interest. From the
rendered rasters, like the one in Figure 1, the width of roads is
measured and explicitly set to road masks in the pipeline ac-
cording to the classification given in OSM.

The OSM data is consumed using the Overpass API filtering
by a bounding box for the area of interest and selecting only
way features, the query for this is available in the project repos-
itory3. Ways are originally LineStrings but are later adjusted
using a buffer to cover the surface of the road. In this way,
LineStrings are converted to Polygons using a width of 6m for
converting ways corresponding to minor roads and a width of
10m for highways. The Polygons representing the roads are
used to generate a binary raster where pixels corresponding to
a road have a value of 1 and pixels belonging to another kind of
surface is marked as 0.

Having the two overlapping rasters, the mask is split into tiles in
the same way as the composite to produce smaller overlapping
images that can be used to train the ML model, since having
the original larger images would make training the model too
demanding. Figure 4 shows an annotated binary mask corres-
ponding to the composite tile in Figure 1.

For handling the corners of the mask where no data may result,
the same is done as with the composite, generating smaller tiles
when no data is found.

3.2 Data Augmentation

In order to obtain a larger dataset for the model to learn better
and take advantage of the obtained images, there is a technique

Figure 4. Sample of an annotated mask tile

called data augmentation that has proved to enhance perform-
ance in deep learning algorithms as seen in (Ronneberger et al.,
2015). Data augmentation finds its base in that the more data
is available for a ML algorithm, the more effective it will be
as stated in (Wang, Perez, 2017). This procedure consists in
enlarging data, in this case, taking images of the training data-
set to be altered in order to increase the volume of the dataset.
For this, images can be shifted, flipped, rotated among other
variations.

Data augmentation is used in both cases, to improve perform-
ance and when there is not enough reliable data to train a model.
(Wang, Perez, 2017) states that the problem with small datasets
is that models trained with them do not generalize well data
from the validation and test set. Hence, these models suffer
from the problem of over-fitting. Over-fitting refers to when
a model learns too well the training data but performs poorly
with new data. So in order to overcome this issue, which hap-
pens when few data is used, the initial dataset is augmented and
the risk of over-fitting is reduced.

In this work, images and masks are rotated to increase four
times the initial dataset, an example of this is showed in Fig-
ure 5.

Figure 5. Sample of image augmentation by rotation
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With the proposed pipeline it is possible to automatize the pro-
cess for creating annotated masks for road extraction, the steps
of the methodology can be summarized as follows:

1. Define a bounding box for the area of interest.

2. Use the bounding box to filter Planet images during
drought and monsoon seasons - or the seasons available
in the area of interest.

3. Upload the satellite images to GEE as assets and grouped
into an image collection.

4. Use the makecomposite.js script to generate a composite
with the satellite images.

5. Use the bounding box to query OpenStreetMap with the
Overpass API for ways within the area of interest.

6. Create a buffer around each way with the width depend-
ing on the type of road as defined in the OpenStreetMap
metadata.

7. Clip ways that stand outside the bounding box.

8. Add an is road column to each polygon representing a
road with the value of 1.

9. Rasterize the vector layer of the polygons using the is road
attribute to mark roads.

10. Use the gdal2tiles tool to generate tiles from both the com-
posite and mask rasters.

11. Save rotated tiles from the composite and mask.

12. Use the output tiles to train a ML model3.

The scripts provided for GEE and pyQGIS automate this pro-
cess.

Figure 6 explains the schema for the pipeline. In here, Planet
imagery was used but this source is interchangeable with other
satellite or aerial imagery.

For the case study, an image for an area of interest of 178.56
km2, resulted in 527 images, each with a resolution of 256 ×
256 pixels. When considering 2 composites for comparing
between seasons, the number of output images was 1054 and
4216 after applying augmentation.

For the 3 towns considered, a total area of 983.9 km2 covered
by composites, resulted in 2857 images, after considering road
seasonality and data augmentation the total output was 22856
with their corresponding masks.

3.3 Conclusions

This work demonstrates a methodology in which crowd-
sourced data from OSM may be used as input for ML al-
gorithms. A pipeline is detailed and explained in which satel-
lite imagery and OSM data are merged to produce a training
dataset for road segmentation. The quality of the generated
masks is directly related to the accuracy of the mapped features
present in the area of interest; nevertheless, for the case study
area, OSM proved to be the one that is most reliable. For the

3Road segmentation model - ht-
tps://github.com/mahmoudmohsen213/airs

Figure 6. Schema for the pipeline

areas of interest considered with the 3 composites used and 3
more for checking both seasons, the resulting images are in the
order of thousands; even if the annotations are not too precise,
the volume produced enables training a ML model. For further
research, it is proposed to work in cooperation with mapping
teams like YouthMappers4 to verify the width of the roads and
type of the roads for the considered area of interest to increase
the accuracy of the output training dataset.
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