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ABSTRACT:

In this paper, we address the curse of dimensionality and scalability issues while managing vast volumes of multidimensional raster
data in the renewable energy modeling process in an appropriate spatial and temporal context. Tensor representation provides a
convenient way to capture inter-dependencies along multiple dimensions. In this direction, we propose a sophisticated way of
handling large-scale multi-layered spatio-temporal data, adopted for raster-based geographic information systems (GIS). We chose
Tensorflow, an open source software library developed by Google using data flow graphs, and the tensor data structure. We provide
a comprehensive performance evaluation of the proposed model against r.sun in GRASS GIS. Benchmarking shows that the tensor-
based approach outperforms by up to 60%, concerning overall execution time for high-resolution datasets and fine-grained time
intervals for daily sums of solar irradiation [Wh.m-2.day-1].

1. INTRODUCTION

Over the decades, the earth science community has been work-
ing hard towards a unifying model that addresses and deals with
the “curse of dimensionality” [Bellman, 1961]. Multidimen-
sional raster data [Fiume, 1989] can be captured by satellite
observations commonly used in earth sciences, precisely in at-
mospheric, oceanographic (salinity, sea temperature, etc.), me-
teorological (humidity, wind speed, etc.) and terrestrial (NDVI,
land cover, etc.). Multidimensional data can be aggregated, in-
terpolated or simulated from other data sources. So often ex-
hibit different characteristics depending on the scale of the ob-
servations. These multidimensional data also provide unique
information regarding “where” and “when”, which is essential
to answer many important questions in geographic information
systems (GIS) [Shekhar, Xiong, 2007] studies. Therefore, the
community has been looking for a framework that underpins a
scalable and extensible approach to drive distributed processing
for solving the problem of efficiently managing and disseminat-
ing huge volumes of multidimensional spatio-temporal raster
data.

We proposed a sophisticated way of handling large-scale multi-
dimensional spatio-temporal data, adopted for raster-based GIS.
Tensor [Papalexakis et al., 2016] representation provides a con-
venient way to capture inter-dependencies along multiple di-
mensions. Tensor’s multiway array methods, compatibility with
sparse matrices can also help to reduce the cognitive load and
cue the attention by highlighting the appropriately reduced di-
mensionality. Therefore, tensor can be a way to represent the
multivariate spatio-temporal data in tensor. We used the mul-
tidimensional tensor framework to model such problems and
adopted data-flow based computational graphs for efficient ex-
ecution of the calculation processes. In this approach, spatio-
temporal data can be represented as non-overlapping, regular
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tiles of 2-D raster data, stacked according to the time of data
captured. We used Tensorflow, Google’s open source library
to model problem. In Tensorflow, numerical computations are
done with data flow graphs where, nodes represent mathemat-
ical operations, while the edges represent the data as tensors.
As a case study, we quantified the spatio-temporal dynamics
of solar irradiation calculations and 2.5-D shadow calculations
for cities at very high space-time resolution using the proposed
framework. We described a prototype implementation that brings
a high-level space-time scalability integrated over fine temporal
granularity, for an entire city.

2. BACKGROUND

This section provides a few necessary definitions and describe
our notation before we start with the main topic. There are two
parts of this discussion. The first part [Papalexakis et al., 2016]
deals with the theoretical aspect of tensor and in the second part
[Abadi et al., 2015] we will discuss tensor in the context of a
programming environment.

Definition 2.1 (Tensor). Tensors are mathematical objects which
represent generalizations of vectors and matrices to potentially
higher dimensions, described by the order, a unit of dimension-
ality; shape, the size of each dimension and a static type as-
signed to the tensor’s elements.

As shown in Figure 1 notation-wise, scalars are denoted by
lower case letters x ∈ R, vectors by lower case bold letters
x ∈ RI1 , matrices by upper case bold letters X ∈ RI1×I2 , and
a tensor of order N is denoted by upper case bold Euler script
letters X ∈ RI1×I2×...×IN .

Definition 2.2 (Tensor Indexing). A tensor slice (subfields), can
be extracted by fixing all but two tensor’s indices. Where as,
Fibers are created when fixing all but one index.
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(a)
x ∈
R

(b) x ∈
R3

(c) X ∈ R3×4 (d) X ∈ R4×3×4

Figure 1. Scalar(x), Vector(x), Matrix(X) and Tensor(X )

For the third order tensor shown in Figure1(d) (Figure 2(f)) the
slices for each frontal, lateral and horizontal are shown in Fig-
ure 2(a), (b) and (c), respectively. And the fibers for each col-
umn, row and tube are shown in Figure 2(e), (f) and (g), respec-
tively.

Figure 2. a single slice and a fiber of a 4× 3× 4 Tensor

Definition 2.3 (Vectorization). Vectorization of a given tensor
X ∈ RI1×I2×...×IN can be denoted as vec(X), where vec :
RI1×I2×...×IN → RI1.I2...IN . The outcome is a tall column
vector stacking the column fibers as shown in Figure 3 for a
tensor X with two frontal slices X1 and X2

X1 =

[
a00 a01 a02
a10 a11 a12
a20 a21 a22

]
X2 =

[
b00 b01 b02
b10 b11 b12
b20 b21 b22

]

vec(X ) =



a00
a10

...
a22
b00

...
b22


Figure 3. Vectorization of a tensor X ∈ R2×3×3 with 2 frontal

slice X1 and X2

Definition 2.4 (Reshaping). The reshape operator for a ten-
sor X ∈ RI1×I2×...×IN to a size specified by a vector x =
[x1, x2, ..., xM ] with

∏M
m=1 xm =

∏N
n=1 In returns an order-

M tensor Y , such that vec(X ) = vec(Y), and is expressed as
Y = reshape(X ,x) ∈ RI1×I2×...×IM

Definition 2.5 (Sparsity). The sparsity (low-rankness) of a vec-
tor/matrix can be rationally measured by the number of nonzero
entries and can be quantified with a score, which is the number

of zero values in the vector/matrix divided by the total number
of elements in the vector/matrix.

Tensor sparsity is interpreted beyond the low-rank property of
all its unfolded subspaces and should more importantly con-
sider how such subspace sparsities are affiliated over the entire
tensor structure. Figure 4 shows a sparse tensor the black cells
represent ‘no-value’ fields.

Figure 4. A Sparse Tensor with no value denoted as black cells

2.1 Tensorflow

TensorFlow [Abadi et al., 2015] is an open source software li-
brary, developed by Google Brain Team within Google’s Ma-
chine Learning Intelligence research organization, mainly to
conduct machine learning and deep neural network research.
However, the system is general enough to be applicable in a
wide variety of other domains as well. Moreover, tensorflow’s
flexible numerical computation core can be used across many
other scientific domains. TensorFlow combines the computa-
tional algebra of compilation optimization techniques, making
accessible the calculation of many mathematical expressions
where the problem is substantial and the time required to per-
form the computation is long.

Figure 5. Tensorflow Architecture

Tensorflow defines a general purpose computational graph to
achieve ease of expressions and creates tools for running it in
different environments. It can execute the operation on various
hardware platforms like CPU, GPU, Android, etc. Tensorflow
achieves that using Tensorflow Distributed Execution Engine
as shown in Figure 6. One can write code in either Python,
C++, Java and Go kind of frontend and after that Tensorflow
Distributed Execution Engine takes the code and converts it into
underlying hardware instruction set.

Tensors are the primary and central data structure that Tensor-
Flow uses to operate on the computational graph. Tensors are
declared as variables and feed in as placeholders into the com-
putational graph to perform certain mathematical operations.
These computational graphs are directed graphs with no recur-
sion, which allows for computational parallelism. A tensorflow
core programs comprised of following steps shown in Figure 6.

3. TRANSFORMING RASTERS TO
SPATIO-TEMPORAL TENSOR

Spatial information can be represented in raster data models as
a raster map consists of a grid (or matrix) of cells, each one
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Figure 6. Block diagram a Tensorflow core program

storing a value, represents an area whose size changes depend-
ing from the resolution of the map. Cells are arranged in rows
and columns where rows represent the x-axis and columns y-
axis of a Cartesian plane. Stored values in each cell repre-
sents continuous data such as altitude or temperature, or cat-
egorical data. consider a set of raster maps of fixed size. To
formally describe, a raster R with I = {i1, i2, ..., im} rows
and J = {j1, j2, ..., jn} columns is a set of fixed locations
distributed regularly in space with constant distance between
adjacent locations. For every location, we record observations
on a fixed set of time stamps, T = {c1, c2, ..., ct}, which can
again be regularly spaced with equal delays between consecu-
tive measurements as shown in Figure 7.

Figure 7. Observation rater maps for equal time intervals

It is the Cartesian product of R× T that results in the complete
spatio-temporal tensor grid X ∈ R(t×m×n) as shown in Fig-
ure 8, where every cell on the tensor X , (c, i, j), has a distinct
measurement.

Figure 8. Observation rasters stored in a single 3-D tensor

Cell values can be either positive or negative, integer, or floating
point. At the same time, Many of the cell combinations might
not make sense or the data for them might be missing. Cells
have a NoData value to represent the absence of data (Figure
4). For example, building footprint raster dataset or land cover
dataset are sparse in nature. Figure 9 shows the sparse represen-
tation of the building foot print raster data of Esch-Sur-Alzette,
the second largest town in Luxembourg. The white cells repre-

sents the NoData values which occupies more than 70% of the
total cell counts (1828× 1874).

We used a dataflow programming model used for TensorFlow
[Abadi et al., 2015]. A model is represented by a directed
cyclic graph, while the nodes represent operations or primitive
functions and the edges represent the data flow between opera-
tions. The inputs of a note is represented by the edges incident
into the node, and edges incident out of the node represent its
outputs. The data on edges can be either immutable tensors
(tf.constant) or mutable variables (tf.Variable,
tf.placeholder). Both tensors and variables are multi-
dimensional arrays of primitive types. A session (tf.Session)
allows to execute graphs or part of graphs. It allocates resources
(on one or more machines) for that and holds the actual values
of intermediate results and variables. When all their inputs are
ready, the node gets ready to run. The same way, multiple nodes
can be executed in parallel when ready. Tensor vectorization
(Definition 2.3) can be achieved through tf.reshape() and
tf.squeeze(). Both are cheap in that they operate only on the
metadata (i.e. the shape) of the given tensor, and don’t modify
the data itself. provides tf.SparseTensor and tf.sparse

tensor to dense APIs to perform dense to sparse conversion
and vice-versa, respectively and allows us to consider additional
dimensions such as time, in order to identify dense regions of
interest in the raster more accurately and specifically.

Figure 9. Sparse representation of the raster map

3.1 Motivating Example

We will explain how did we calculate solar angle of incidence
and stored the spatio-temporal resultant data in tensor using
Tensorflow. The angle of incidence (θ) is the angle between
the solar rays and the surface normal shown in Equation. In
order to evaluate the angle of incidence we need to specify the
orientation of the surface normal. This is done in terms of the
surface tilt angle also known as slope (θβ), and the surface az-
imuth angle also known as aspect (θγ). The position of the sun
relative to surface is expressed by the angle of incidence us-
ing two additional solar angles solar zenith angle (θz) and solar
azimuth angle (θα) given in Equation 1 and Equation 2, respec-
tively. Where, φ denotes the latitude, δ denotes the declination
angle and ω denotes the hour angle. The azimuth angle conven-
tion used in our model, is defined as degrees east of north (e.g.
North = 0, East = 90, West = 270). The solar angle of incidence
is a vital parameter for solar irradiation calculation. Both beam
and diffuse irradiation depend on the angle of incidence value
[?].

θz = cos−1(cosφ cos δ cosω + sinφ sin δ) (1)

θα = sign(ω)

∣∣∣∣cos−1(
cos θz sinφ− sin δ

sin θz cosφ
)

∣∣∣∣ (2)
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θ = cos−1(cos θβ cos θz + sin θβ sin θz cos(θα − θγ)) (3)

Next, our objective is to calculate the angle of incidence from
sunrise to sunset for a specific date in a year for Esch-sur-Alzette
with spatial resolution of 1 meter, 1828 × 1874 raster maps.
Therefore, the resultant data is spatio-temporal in nature and
can be stored in a tensor X ∈ R(no of time frames×1828×1874).
The corresponding code snapshot written in python using Ten-
sorflow APIs is shown in Figure 10. In the above code snap-
shot,‘ tf’ suffixed variables are used to represent placeholders
where as ‘ ’ (underscore) prefixed variables are represented as
Python NumPy arrays. As described in Section 2.1 feed dict

feeds the placeholders with values inside a session to create the
computation graph. The hour angles, hrA is the angular dis-
placement of the sun east or west of the local meridian due to
rotation of the earth on its axis at 15◦ per hour from sunrise
to sunset for a given time interval interval; morning neg-
ative, afternoon positive. We vectorized the hrA in the next
line to make it a column matrix. Next, we created a tensor
lat2D that is a 3-D tensor, where the first dimension repre-
sents the dimension of hrA and the lat two dimension is equal
to the sparsed latitude matrix lat. Next, the solar zenith zn

and amimuth ( azm) angles are calculated for each time frames
for the whole city at once. Finally, we calculate the solar an-
gle of incidence for the whole city for each time interval from
sunrise to sunset. Finally we restore the raster map convert-
ing the sparse matrix to dense using tf.SparseTensor and
tf.sparse tensor to dense.

4. TENSOR BASED FRAMEWORK FOR MODELING
SOLAR IRRADIATION

The the underlying tensor-based framework is depicted in Fig-
ure 11. We compute the beam, diffuse and ground reflected so-
lar irradiation raster maps for a given date, latitude, surface e.g.,
slope, aspect and atmospheric conditions e.g., albedo, linke tur-
bidity factor and solar parameters e.g., solar constant in python
using TensorFlow, Google’s open-source library used to sim-
plify mathematical computations (Table 1).

The workflow of the running program that implements the solar
irradiation model in TensorFlow can be described in four steps:

1. Build a computational graph: Nodes in the graph repre-
sent mathematical operations present in the equations (i.e,
1, 2, 3), while graph edges present the operands i.e, in-
put parameters as tensors. The underlying data-flow graph
of the implementation of shadow calculation is shown in
Figure 12 using Tensorboard. Tensorboard is the interface
included with any standard TensorFlow installation used
to visualize the data-flow graph and other tools to under-
stand, debug, and optimize the model.

2. Allocate space in memory: Tensorflow placeholders sim-
ply allocate block of memory for future use. As shown
in Figure 11, the inputs from Table 1 form a tensor data
frame. The feed dict API is used to feed the data into
placeholder when required. By default, placeholders sup-
ports unconstrained shape, which allows to feed tensors of
different shapes in a session.

# variable names are self-explanatory

# hour angle

hrA = tf.multiply (0.261799, tf.subtract

(time_tf, 12.00))

# vectorising hour angle

hrA = tf.expand_dims (hrA, 1)

# adjusting latitude raster according to the

time frame

row = tf.size (hrA)

col = tf.size (latitude_tf)

lat2D = tf.reshape (tf.tile (latitude_tf,

[row]),[row, col])

# solar zenith angle

zn = tf.acos (tf.add (tf.multiply (tf.sin

(latitude_tf), tf.sin (declinationA_tf)),

tf.multiply (tf.multiply(tf.cos

(declinationA_tf), tf.cos (hourA_tf)),

tf.cos (latitude_tf))))

# solar azimuth angle

azm = tf.multiply (tf.sign(hourA_tf), tf.abs

(tf.acos ((tf.divide (tf.subtract

(tf.multiply (tf.cos (zn_tf), tf.sin

(latitude_tf)), tf.sin (declinationA_tf)),

tf.multiply (tf.sin (zn_tf), tf.cos

(latitude_tf)))))))

# solar angle of incidence

aoi = tf.acos (tf.add (tf.multiply (tf.cos

(zn_tf),tf.cos (slope_tf)),

tf.multiply (tf.subtract (azm_tf, aspect_tf)),

tf.multiply (tf.sin (zn_tf), tf.sin

(slope_tf)))))

delta = tf.SparseTensor(indices = msk2d, values

= aoi_tf, dense_shape = [1828, 1874])

aoi3D = tf.sparse_tensor_to_dense(delta)

# computing the dataflow graph

with tf.Session() assess:

sess.run( tf.global_variables_initializer())

_lat2D = sess.run(lat2D, feed_dict =

{time_tf: _interval, latitude_tf: _lat})

_hrA = sess.run(hrA, feed_dict = {time_tf:

_interval})

_zn = sess.run(zn_tf, feed_dict = {hourA_tf:

_hrA, latitude_tf: _lat2D,

declinationA_tf: _decA})

_azm = sess.run(azm_tf, feed_dict =

{hourA_tf: _hrA, latitude_tf: _lat2D,

zn_tf: _zn, declinationA_tf: _decA})

_aoi = sess.run(aoi, feed_dict = {slope_tf:

_slope, aspect_tf: _aspect, azm_tf: _azm,

zn_tf: _zn})

_aoi3D = sess.run(aoi3D, feed_dict = {aoi_tf:

np.degrees(_aoi)})

Figure 10. Implementing Solar Angle of Incidence Using
TensorFlow
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Figure 11. Tensor Based Solar Irradiation Modeling Framework
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Figure 12. Dataflow Graph Generated by TensorBoard For Shadow Calculation

Table 1. Input/ output of Solar Irradiation model

Input Output
Input Name Type Unit Output Name Type Unit
elevation raster meters beam irradiance (single day) raster W.m−2

slope raster decimal degrees beam irradiance (whole day) raster Wh.m−2.day−1

aspect raster decimal degrees diffuse irradiance (single day) raster W.m−2

latitude raster decimal degrees diffuse irradiance (whole day) raster Wh.m−2.day−1

linke turbidity raster dimensionless reflected irradiance (whole day) raster W.m−2.day−1

albedo raster dimensionless total irradiance (whole day) raster Wh.m−2.day−1

date single value date
time single value decimal hours
time step single value decimal hours

3. Create session: To compute anything, a graph must be
launched in a session and the session places the graph op-
erations onto devices, such as CPUs or GPUs, and pro-
vides methods to execute them. These methods return re-
sultant tensors as numpy ndarray objects in Python.

4. Close session: Shutdown the session.

The most fundamental and obvious task for the designer of a
parallel programming system ([Cole, 1991]) is the problem de-
composition, i.e the identification of parallelism by deciding
which part of the problem to be handled implicitly and which
to leave to the programmer. Tensorflow offers implicit paral-
lelism and distributed execution. We solve the existing space-
time trade-off in solar irradiation calculation by the above 4

steps. Step 1 is designed in such a way that it helps the sys-
tem to identify operations that can execute in parallel, using
explicit edges to represent dependencies between operations.
Along with step 2, we used tensor aggregation to reduce the
raster maps to concept level in one dimension, discarding the
NoData values through dimensionality reduction. A sparsity
regularization is usually added in order to achieve good com-
pression and aggregation properties on the raster data. In step 3
and 4, we partition program across multiple devices (different
CPU cores) to speed-up the overall computation through dis-
tributed execution.

We run our model on Esch-sur-Alzette (49◦29′44.988′′N,
5◦58′50.016′′E), located 5,505.41 km north of the equator, in
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Figure 13. Performance Comparison

the northern hemisphere 1. It is situated in south-western Lux-
embourg on the border with France, the second largest town
after the country’s capital Luxembourg city. The total area of
14.35 km2 with elevation ranging from 279m to 426m. In this
paper, we used a digital surface model of Esch-sur-Alzette. The
grid is 1874 columns by1828 rows, with a spatial resolution
of 1 meter. The proof of concept run on a 64 bit machine
with Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz proces-
sor. The performance is quite significant. We compare our
model against r.sun ([Jaroslav Hofierka and GRASS Develop-
ment Team, 2017]), solar irradiance and irradiation model in-
side GRASS GIS ([GRASS Development Team, 2017]). We
provide a comprehensive performance evaluation of our model
in Figure 13 against r.sun. Based on our evaluation, we can
say that our model achieves at least 30%-90% performance im-
provement with respect to overall execution time for much larger
datasets and fine grained time interval for daily sums of solar ir-
radiation [Wh.m-2.day-1] calculation.

5. CONCLUSION

We formulate the “curse of dimensionality” problem in han-
dling multidimentional spatio-tmporal data in raster-based geo-
computation into a tensor learning framework which explores
different approaches to defining the geospatial grid used to con-
struct the data tensor. Using it, we developed a fast and accu-
rate model with theoretical guarantees for its convergence and
validated the correctness and the efficiency of our implemen-
tation on real application datasets. Precisely, the main charac-
teristics of the proposed framework include defining, optimiz-
ing and efficiently calculating mathematical expressions involv-
ing multi-dimensional arrays (tensors); Transparent use of GPU
computing such that the same code can be run either on CPUs or
GPUs; Implicit parallelism and distributed execution with high
scalability offered by data-flow based implementation. More-
over, the Python implementation of the proposed model makes
it GRASS GIS ‘Add-on’ compatible. The tensor-based con-
ceptual framework also enables agile analytics on large scale
spatio-temporal datacubes, including simulation, sensor, time-
series analysis, and statistical data. Future work concerns deeper
analysis on formalizing the multidimensional versions of the
primitive operations defined in map algebra; namely, local, fo-
cal and zonal operations using the proposed tensor-based frame-
work.

1https://fr.distance.to/Esch-sur-Alzette
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