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ABSTRACT:

This paper reports about an effort to generate LoD3 models of buildings semi-automatically, with the highest possible level of
automation. It is work in progress. We use multi-sensor data like aerial images from a 5-head camera with a GSD of 10cm, UAV
images, and aerial and mobile LiDAR point clouds. We distinguish two cases: LoD2 models are available and they are not. We
apply Multi-Photo Geometrically Constrained Least Squares Matching for different kind of point measurements. The regularity
of many building fagades in Singapore leads us to the idea to generalize the measurement procedure towards using measurement
macros (geometrical primitives, i.e. windows, doors, etc.) and combine reality-based with procedural modelling. In parallel we
try to model these facade elements from LiDAR point cloud data. In another research line we do building detection by a novel
approach to land-cover classification, incorporating features of the facades to improve the classification accuracy. To generate
the semantic labels of the facades, we developed a spatially unrelated mean-shift clustering method to yield structurally confined
segments. It is the characteristic of automated and even semi-automated procedures that the results need some amount of editing.
We therefore work on interactive post-editing approaches on CityGML building models containing semantic information of each
surface. Maintaining the semantic information throughout the editing process is essential but often lack the support from current
tools. Accordingly, we implement a method to synchronize CityGML models. Overall this project consists of a great number of

different algorithmic components, which can only be coarsely explained in this paper.

1. INTRODUCTION

3D computer-based city models have not only become an indis-
pensable basis for a variety of tasks related to issues of urban
sustainability, but also for real estate business, virtual tourism,
microclimate studies, among others. Today, they are essential
to the concept and realization of Smart Cities. However, a key
problem is to generate such models in a way that they are inex-
pensive, accurate, complete, easy to update, and useable as the
basis for spatial information systems.

Based on previous work at the Simulation Platform of the Fu-
ture Cities Laboratory, we will present the R&D work in 3D/4D
city modelling that is currently performed under the Virtual
Singapore project, with the goal to model the geometry at level
of detail 3 (LoD3). The NUS (National University of Singa-
pore) campus is used as the test area for the algorithms and
procedures.

Over the years many fully automated approaches to building
extraction have evolved, but only very few were designed to
be semi-automated from the very beginning. Among those Cy-
berCity Modeler (Gruen, Wang, 1998) is the most prominent
one. Very often, procedures are declared automatic but require
so much post-editing that their status as automatic methods be-
comes questionable.

Object extraction in general consists of three steps: detec-
tion, reconstruction (geometric modelling) and attributation (se-
mantic modelling). This sequence even defines a processing
strategy, but also represents a path towards increased complex-
ity. At the detection level cues like colour and Digital Sur-
face Model (DSM) data have proven to be particularly valuable.

They are first used to separate a man-made object from veget-
ation and other natural features; then to distinguish buildings
from other man-made objects. Good success has been repor-
ted with isolated houses. Complex urban structures still widely
resist this approach.

In reconstruction one encounters a great variety of methods de-
pending on the type of building, level of required detail, number
of images, kind of image cues and image primitives used, and
utilized external and a priori information, level of automation
and operator interference. Recently, there has been a clear trend
towards the use of multiple (more than two) images, colour
cues, early transition to 3D processing, and geometrical con-
straints. Image cues may involve texture, colour, shadows, and
reflection properties. Image primitives include points, double-
and triple-legged vertices, linear elements, and homogeneous
regions.

There are basically two fundamental approaches which may
lead to progress in automation: (a) advancement in image un-
derstanding and (b) multi-sensor, multi-data techniques. While
(a) is a very hard problem to solve with a very long-term per-
spective, (b) can be realized more readily. We are combining
both approaches in a project that is funded by the NRF (Na-
tional Research Foundation) Singapore and part of the larger ef-
fort towards creating a high-resolution 3D city model of Singa-
pore (Virtual Singapore, Call for Proposals: Towards Automatic
Acquisition Of 3D City Models For Virtual Singapore)

For this purpose we are looking into the problems of

1. Geometric modelling by image analysis and point cloud
processing
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2. Landcover classification and semantic modelling
3. Generic modelling and UI (User Interface) issues

We target a system of LoD3 model generation with operab-
ility potential by integrating three necessary sub-components:
1) semi-automatic 3D roof and fagade geometry and topo-
logy reconstruction, 2) facade elements semantic modelling and
procedural modelling of fagades and 3) interactive 3D edit-
ing based on polygon editing and procedural generation. Our
proposed research combines the reality-based and procedural
modelling, adopts semantic image understanding and interact-
ive editing to accelerate the overall workflow of LoD3 model
generation and enables various semantic attributes.

This project presents work in progress. Here we report about
the state of our work.

We have defined 3 work packages (WPs), whose interaction
is shown in Figure 1 and which will be explained in detail in
chapter 2.
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Figure 1. Interaction of work packages

The overall workflow is demonstrated in Figure 2.

User interface
Mono | Stereo | Roof-Terrain Modeling &
Editing| Visualization

|
LIDAR point clouds &
Photogrammetric images

Image matching & Point clouds resampling
-> Digital surface models

Image-based Roof - Terrain ——— l
key points measurement Ml Coarse models (——p, Modek-driven approach | Semanticlabeling
* Iteractve Editing | > Semantics

3D modeling (Building, Facades, Roads, Trees) LoD1-LoD3
Quality control procedure

Figure 2. Overall workflow of the project functions

2. DEFINITION OF WORKPACKAGES

2.1 WPI1: Automatic/Semi-automatic Building Model Re-
construction By Use Of Images And Point Clouds

There are three major procedures in the LoD3 building recon-
struction:

1. Roof reconstruction. This procedure is to reconstruct the
roof’s boundary, roof planes and roof parts above the roof
planes.

2. Ground surface reconstruction: The ground surface can
either be taken from existing Digital Terrain Models
(DTMs) or automatically/semi-automatically reconstruc-
ted.

3. Wall reconstruction. This procedure is to reconstruct the
walls and facade elements. Here we concentrate on recon-
structing three typical facade elements: windows, doors
and balcony.

For our reconstruction tasks we do have available: Aerial im-
ages from a 5-head camera with a GSD of 10cm, selected
images from UAV flights, aerial LiDAR point clouds and ter-
restrial point clouds from a mobile mapping system (MMS).

2.1.1 Reconstruction From Images Figure 3 shows the
workflow for semi-automated geometric building model recon-
struction from images.

The basic module “point measurement” is to accurately meas-
ure the point’s location both in image space and 3D space. It
is applied to all procedures throughout the LoD3 reconstruc-
tion. We use an advanced image matcher (Geometrically Con-
strained Multi-Image LS Matching) to determine the geometry.
This approach solves in one system the image-based matching
parameters of all images and the object space coordinates X,Y,Z
of the point in question simultaneously. The covariance matrix
computation allows for an advanced quality analysis (Gruen,
1985, Gruen, Baltsavias, 1986).

We consider three principles when designing our algorithmic
approach:

minimize the amount of human interaction.

. maximize the location accuracy of vertices of the building
models.

3. optimize the reliability of reconstruction.

o =

Two concepts are used throughout the workflow to achieve
these goals:

1. develop measurement macros.
2. apply least squares matching.

The operator will determine a key point in the fagade for which
matching has to be done. Given a surface model of the area un-
der consideration (which can be derived from the aerial images)
we can compute the object space coordinates of the keypoint.
Since LSM is a non-linear procedure we need in all images ap-
proximate positions for the corresponding image points. Those
positions are for instance obtained by back-projection of the
keypoint’s object space coordinates into the image spaces.

2.1.2 Measurement Macros The measurement macros are
combinations of several basic 2D/3D shapes, e.g. rectangles,
circles, cubes, cones etc., to represent complicated building ele-
ments, such as balconies, windows etc. In such case we go
through the following operator-executed steps:

Selection of area containing repetitive patterns — Selection of
several key points to create a measurement macro — Entering
of the vertical and horizontal element numbers; the measure-
ment macro will be applied to the whole area. The basic idea is
illustrated in Figure 6.
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Figure 3. Workflow of the image-based semi-automated
geometric building model reconstruction

Figure 4. Left is the master image with the keypoint marked.
Center and right are slave images with the intitial locations of

the keypoint

Figure 5. Final matching result after a number of LSM iterations
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Figure 6. Basic idea of measurement macros

The measurement macros can greatly reduce the workload for
operators when dealing with repeated patterns. For example: A
facade filled with windows.

The operator selects an area containing repetitive patterns

. He/she selects several keypoints to create a measurement
macro (Figures 7 and 8)

3. He/she enters the vertical and horizontal element numbers;

the measurement macro will be applied to the whole area

(Figure 8)

N =

2.1.3 Opening Detection In Point Clouds Facade ele-
ments as windows and doors are sometimes substituted by the
term of openings. Therefore, the opening detection and recon-
struction contribute to the upgrade of models from the LoD2.

Figure 7. The four corners of a window are selected by the
operator, then the window is represented by two polygons.

Figure 8. Left: 3D model of the window after its four corners
have been measured. Right: automatically generated windows
after the operator enters the vertical and horizontal window
numbers

In particular, the terrestrial LIDAR data is a favourable data set
supplying facade information for the detection of openings. In
general, hole-based (Pu, Vosselman, 2009, Zolanvari, Laefer,
2016), local and global feature based (Pauly et al., 2008) and
rule-based (Becker, 2009, Nan et al., 2010) are the frequently
used approaches in detecting openings from point clouds.

In order to extract feature points of openings (e.g. window
corners) and to mitigate the noise effect from point clouds, we
use a sliding window method (Li et al., 2018). Firstly, the
facade is inspected by the predefined horizontal and vertical
sliding windows. During the inspection, we record the point
density of the search window coupled with its current location.
Followed by a sequenced slide, we observe that the set of fea-
tures presents a certain regularity because of the different point
density of the facade elements. Therefore, we follow the law
in the feature domain to extract the borders of openings. Inter-
secting the border lines, corner points are eventually generated.
This approach conducts a recovery of points in partly missing
data areas by inferred symmetric rules. The extracted points
and rules can be integrated into measurements on 2D images
(for example see Figure 9 right) and opening reconstruction.

Although feature points can be extracted by the mentioned ap-
proach, there still remains challenges in the opening detection
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from point clouds. As a data-driven method, the precision
and completeness of detections are to rely on the data quality.
It is subject to outliers, noisy points, occlusions and inhomo-
geneous point density which cause impaired detection results.
Moreover, many of the works assume that the openings are rec-
tilinear and repetitive with neat alignment.

For ease of the above discussion, we adopt a hole-based al-
gorithm which uses the geometry information from point clouds
to reconstruct the configuration of openings (see Figure 9 left).
From the observations by our experiments, we assume that the
distribution of current detected data more or less follows certain
rules. In other words, there would be a generic rule describing
the relationship between openings on a fagcade. Thus, our future
work is generating a generic rule for openings reconstruction
and facade modelling.
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Figure 9. Reprojection of extracted feature points from the 3D
point cloud to a 2D oblique Image; Left: The green colour
represents the inhomogeneous mobile LiDAR data of a fagade.
White dots are the extracted feature points; Right: yellow points
are the reprojected points from the white dots. Numbers show
the topology of the points

2.2 WP2: Landcover Classification, Semantic Enrichment
And Texture Mapping

Assigning attributes to the components of the models is an im-
portant issue for LoD3 modelling. We aim to employ image
analysis and machine learning techniques to enhance the se-
mantic content of the 3D models. In line with image analysis,
we also implement texture mapping to assign photorealistic ap-
pearance to the models.

The major tasks in WP2 include the land-cover classification
of the top-view images and fagcade semantic labelling using
the oblique images. The semantic labels for the top-view and
facade objects serve for two purposes: first of all, the land-cover
maps provides ROIs (regions of interest) such that DSM-guided

measurement can be performed directly to locations with ap-
propriate zoom-in levels where building roofs or other objects
such as trees. Secondly, the fagade labels on one hand can serve
as ROI for facade object measurement, and on the other hand
function as important contextual information for assigning at-
tributes of facade objects for LoD3 city modelling. Under such
a context, our solutions for these two tasks aim to employ the
images and their intermediate product (e.g. DSM) through ma-
chine learning algorithms to achieve accurate land-cover classi-
fication and semantic labelling of facades. These tasks are high-
lighted in the following two sub-sections (a) Land-cover clas-
sification using facade information from oblique images, and
(b) a novel pattern-based labelling method for labelling via seg-
mentation and convolutional neural network (CNN).

2.2.1 Land-Cover Classification With Facade Informa-
tion Land-cover classification is a well-studied yet challen-
ging topic, especially for very-high-resolution data (2m GSD
(ground sampling distance) or less). Spectral and textural
features extracted from top-view images as conventional ap-
proaches are standard and well-practiced, while its capacity can
be limited due to the high intra-class variability and inter-class
similarity. Such ambiguities may be readily addressed by using
oblique-view images since they can provide useful information
to differentiate objects with a similar appearance in top-view.
Therefore, this contribution utilizes the oblique aerial images
by extracting respective features and incorporates them with
the top-view features in a novel way, with the aim to push the
boundary of land-cover classification accuracies.

To assign appropriate fagades to each of the top-view seg-
ment, we hence propose the following procedure: Firstly, we
assume only exist on above-ground objects and thus we seg-
ment these objects from the DSM (digital surface model) us-
ing a morphology-based method(Qin, Fang, 2014). Secondly,
we locate the nearest fagades of the object by assuming it as
a planar face, therefore oblique images can be projected to the
corresponding face for feature extraction. The procedure is il-
luminated in Figure 10.
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Figure 10. The fagade texture extraction procedure from oblique
images.

In this work, the average color within each segment and their
standard deviation in R, G, B channel, as well as the Haar-
like features (Crow, 1984, Viola et al., 2001) that are defined as
the difference of the sum of pixel values inside different areas
are stacked as feature vectors. Features are extracted for each
planar face of the top-view object and thus we eventually obtain
aggregated features in each side of the object.

To analyze the improvements of the classification with the
facade information, we test the classifications at five sites near
and in the National University of Singapore (NUS) campus. For
each test site, the 1% of the marked labels is selected as train
samples for a random forest classifier (Breiman, 2001). In our
experiment, dimension of the feature vector is 28 in which 12
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are the facade features and the others include the principal com-
ponents (PCA) of the color in the top-view orthophoto, DMTHP
features of the brightness image, darkness image, and the DSM
as described in (Zhang et al., 2015). The final results can be
found in Table 1. We can observe that even with very limited
training samples, the facade features have improved the average
overall accuracy around 4.9%, especially the building accuracy
has been improved by 10%, more details can be found in (Xiao
et al., 2019).

Yes 38.48 97.45 9527 6428 60.51 95.04 81.94 73.07
No 36.11 97.55 9520 6249 7426 5891 65.94 53.79
Yes 68.13 86.32 68.75 82.10 74.07 97.75 82.59 77.31
No 70.23 82.95 65.59 80.81 88.85 84.50 80.36 74.44
Yes 62.65 87.23 92.06 79.57 97.80 97.69 92.00 87.99
No 65.04 85.26 92.06 80.69 89.03 97.85 88.86 83.23

Yes 58.26 58.42 47.80 99.97 71.90 97.15 67.76 60.76
No 57.69 57.01 39.70 99.97 67.82 97.15 65.87 58.39
Yes 80.72 80.39 78.77 97.33 82.04 93.52 86.86 81.29
No 76.46 86.78 7721 9435 8233 9323 85.65 79.62
Yes 61.65 81.96 76.53 84.65 7726 96.23 82.23 76.08
No 61.11 81.91 73.95 83.66 80.46 86.33 77.34 69.89

Table 1. The land-cover classification with/without facade
information.

2.2.2 Facade Semantic Labelling Using Image Segmenta-
tion And CNN Semantic labels of the fagade provide contex-
tual information for LoD3 modelling. Existing deep learning-
based methods do not consider the regularity and facade repet-
itive patterns, thus generating noisy and distorted labeling res-
ults. In this work, we developed a spatially unrelated mean-
shift clustering method to yield structurally confined segments,
which is based on the hypothesis that most of the facade ele-
ments are regular and can be seen as repetitive or partially repet-
itive, thus to regularize the predicted facade labels to be visually
consistent with the facade image patterns.

A
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Figure 11. Spatially unrelated image orthographic clustering and
segmentation.

Since most of the facade elements for medium or high-rise
buildings follow a grid pattern, we firstly rectify the facade im-
ages (Figure 11), and we then treat each row or column as a
feature vector and cluster all of them into different groups, as a
spatially unrelated mean-shift clustering. By applying this clus-
tering, the entire facade image can be segmented into different
grids as displayed in Figure 11.

We use a U-net (Ronneberger et al., 2015) to classify the facade
with different labels. Since U-net predicts per-pixel labels the
yielded segmentations can be blurry in its element boundar-
ies (Figure 12, lower centered image), the segmentations per-
formed using our spatially irrelevant mean-shift segmentation
can further regularize the predicted labels (Figure 12, the right

image), thus producing a much clearer semantically labeled im-
age.

Clustered grid image

Mean-shift gl
clustering

Input U-Net (Dee)

Fagade element
Image learning parsing results
network)

Semantic segmentationimage

Figure 12. Facade semantic labeling using segmentation and
CNN

2.3 WP3: Interactive Post-Editing And Procedural Mod-
elling Of The Building Facade

Since the quality of the models generated by WP1 and WP2
can only be as good as the input data, further refinement of the
models may be necessary for certain type of LoD3 applications.
An important correction tasks is e.g. the extension of facade
patterns into occluded areas. Due to vertical greenery, which is
frequently found on facade in Singapore, underlying facade ele-
ments may be covered and therefore not reconstructed correctly
by WP1 and WP2. This is why WP3 implements a custom 3D
editor that offers interactive editing and procedural modelling
techniques to enhance the models.
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Figure 13. Typical procedural fagade templates reality-based on
Singapore’s HDB buildings.
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A set of facade templates (see Figure 13 for some examples)
is developed which allows efficient modelling and correction of
models. Data from WP1 and WP 2 is used to parameterize the
templates according to the measurements.

The editor allows changing the parametrization either through
explicit entering of measured values, interactive adjustment via
the mouse cursor as well as snapping to the point cloud data
(Kelly et al., 2015). Visually overlaying point cloud data with
the 3D models in the same editor view enables the operator to
adjust the model as well as verify it by comparing it to the actual
LiDAR and photogrammetric measurements.

In addition to template-based facade modelling, state of the art
interactive 3D editing based on push/pull (Lipp et al., 2014)
add classic polygon editing capabilities and geometric prim-
itives which let the operator handle irregular cases that can-
not efficiently represented with rule-based approaches. Inter-
active changes are automatically classified and matched to the
CityGML data model of the editor through model synchroniz-
ation. The automatic matching and classification significantly
reduce the need for manual labelling of interactively construc-
ted facade elements.

2.3.1 Interactive Editing While template-based facade
modelling is very effective for modern high-rise, regular archi-
tectural styles, varying facades such as those found in Singa-
pore’s Chinatown (see Figure 14) often require considerable
manual rework and effective tool support is crucial.

Interactive push/pull geometry modifications are state of the
art and implemented in most commercial 3D modelling suites
(e.g. Trimble SketchUp, Autodesk Fusion 360). They intuit-
ively transform a polygonal mesh locally by interactive vertex,
edge or face drag operations. PushPull++ (Lipp et al., 2014)
adds novel methods for adaptive face insertion, adjacent face
updates, edge collapse handling, and an intuitive user interface
that automatically proposes useful drag directions. PushPull++
has shown to reduce the complexity for common modelling
tasks by up to an order of magnitude when compared to existing
tools and is therefore well suited for an efficient LoD3 mod-
elling process. We use a PushPull++ implementation derived
from Esri CityEngine for interactive geometry modifications.

Figure 14. Traditional shop houses in Singapore’s Chinatown

2.3.2 CityGML Model Synchronization CityGML is
the hierarchical data model used throughout the project.
CityGML'’s building model is a structured geometry with se-
mantic labels for each surface (roof, wall, ground, window,
door, etc.). The semantic information of the building model
is important for applications beyond visualisation such as gov-
erning, planning, simulation, measuring and prediction.

Maintaining that semantic information throughout the editing
process is essential for an efficient workflow. Current imple-

mentations of interactive editing, geometry optimisation, and
clean-up tools often lack the support for semantic information
and only preserve UVs and materials across geometry manipu-
lations. In order to provide a flexible integration of existing as
well as future editing tools, an automatic matching method (see
Figure 15) between the modified geometry and the data model
had to be found.

Figure 15. Automatic matching of 3D model changes to
CityGML data model
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Figure 16. Flow chart of automatic CityGML model
synchronisation

Figure 16 gives an overview of our model synchronisation
method. Applying an interactive tool results in an edited shape
which lacks semantic information because we do not expect
this information to be preserved by tools. The original build-
ing model is the source shape for the ICP algorithm whereas
the edited shape is its target shape. The output of ICP is a
transformation matrix which is applied to the original build-
ing model yielding a transformed building model. An octree is
constructed which includes information (face normal, centroid,
length of edges) from the original building model. An octree
search yields matching rigid transformed faces and their ori-
ginal semantic labels. Removed faces are handled in a similar
way by an additional UV space search.

Newly added faces can be classified as boundary surfaces and
openings. For boundary surfaces, we distinguish roof, wall, or
ground faces based on their normal and centroid position. For
openings, we use again the octree and UV space to find the
position in the CityGML data model, finally resulting in an up-
dated building model which preserves as much as possible the
original hierarchy information and semantic labels.

2.3.3 Facade Templates Reconstruction based on purely
photogrammetric methods faces multiple challenges in an urban
environment:

1. Occlusions (e.g. greenery, pedestrians, cars, etc.)
2. Insufficient data due to privacy
3. Duplicate measurement for the same elements

In order to fill these gaps, we are building a reality-based tem-
plate library which can be parametrized by measurements from
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WP1 and WP2. Figure 14 shows a few examples of typical
facade patterns found on Singapore HDB buildings. Esri’s pro-
cedural runtime (Esri, 2013) is used to generate geometry from
these templates which are then integrated into the final LoD3
building model. The procedural runtime is a library implement-
ing the “Computer Graphics Architecture” (CGA) shape gram-
mar introduced in (Parish, Miiller, 2001), which defines a set
of operations for transforming shapes in space, with a special
focus on patterns found in architecture.

3. CONCLUSIONS

Our paper reports about the algorithmic approaches that we
have chosen/developed in order to generate an operable pro-
cedure for the production of LoD3 buildings in a 3D city model.
We have explored the use of different kind of raw data: Aerial
images from a 5-head camera, aerial LiDAR point clouds, ter-
restrial mobile mapping system point clouds, and if, required,
UAV images. We have considered two cases: (a) Lod2 models
of buildings are already given (which is the case in Singapore)
and (b) no a priori information on buildings is given. In order
to be able to handle case (b) we also have developed a novel
method for land cover classification, including beside the ver-
tical images also 3D information from oblique images. This
added information improves the results of land cover classific-
ation significantly.

Our reconstruction from images uses Geometrically Con-
strained Least Squares Matching for accurate point measure-
ments. In many cases Singaporean buildings have facades with
a quite regular arrangement of features (windows, balconies,
doors, etc). Therefore we have developed a macro-based meas-
urement procedure which uses higher level geometrical ele-
ments “macros”) for the effective measurement of repetitive
features.

Thus we replace point measurements by macro-based measure-
ments. At the same time this opens us the possibility to combine
reality-based with generic modelling.

In a parallel path we investigate how LiDAR-based point clouds
can be used for reconstruction. We use a technique that detects
openings in point clouds under the assumption that these are
windows in a facade. Obviously aerial LiDAR data cannot be
used for this approach because it will not give enough informa-
tion on fagades.

A crucial aspect of our work is the semantic modelling of facade
elements. For this purpose we achieve facade semantic la-
belling using image segmentation and CNN. In this work we
developed a spatially unrelative mean-shift clustering method
to yield structurally confined segments, which is based on the
hypothesis that most of the facade elements are regular.

We are aiming at semi-automated procedures. This is why we
also need an advanced interactive editing procedure. We use a
PushPull++ implementation derived from Esri CityEngine for
interactive geometry modifications. Maintaining the semantic
information throughout the editing process is essential for an
efficient workflow. Current implementations of interactive edit-
ing, geometry optimisation, and clean-up tools often lack the
support for semantic information. Therefore we have imple-
mented a method that allows us to synchronize CityGML mod-
els when going through the editing procedure.

Singapore is a city very rich on trees. What is pleasant for
people is a problem for the modeler, because of substantial oc-
clusions, this is why we implemented a custom 3D editor that
offers interactive editing and procedural modelling techniques
to enhance the models in areas where there is no substantial
information.

This report shows work in progress. As such we are aware that
we do not present a closed solution to the problem, but rather
building blocks which still have to be evaluated and integrated
into an operable system.
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