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ABSTRACT:

3D building models including roofs are a key prerequisite in many fields of applications such as the estimation of solar suitability of
rooftops. The accurate reconstruction of roofs with dormers is sometimes challenging. Without careful separation of the dormer points
from the points on the roof surface, the estimation of the roof areas is distorted in a most characteristic way, which then let the dormer
points appear as white noise. The characteristic distortion of the density distribution of the defects by dormers in comparison to the
expected normal distribution is the starting point of our method. We propose a hierarchical method which improves roof reconstruction
from LiDAR point clouds in a model-based manner separating dormer points from roof points using classification methods. The key
idea is to exploit probability density functions (PDFs) to reveal roof properties and design skilful features for a supervised learning
method using support vector machines (SVMs). Properties of the PDFs of measures such as residuals of model-based estimated roof
models are used among others. A clustering step leads to a semantic segmentation of the point cloud enabling subsequent reconstruction.
The approach is tested based on real data as well as simulated point clouds. The latter allow for experiments for various roof and dormer
types with different parameters using an implemented simulation toolbox which generates virtual buildings and synthetic point clouds.

1. INTRODUCTION

3D city models in the level-of-detail 2 (LoD2) of the standardized
exchange format CityGML (Gröger et al., 2012) have nowadays
a wide range of applications comprising urban planing and traffic
simulation among others. A state of the art review on the appli-
cations of 3D city models is given by Biljecki et al. (2015). The
automatic generation of virtual models and in particular the re-
construction of the is-built-state of existing ones is still an inten-
sive research topic. A survey of urban reconstruction algorithms
is presented by Musialski et al. (2012) where different data, sen-
sors and methods are shown. A further review on various recon-
struction methods for urban modeling from laser scanning data
has been recently published by Wang et al. (2018).

Due to the high relevance of roof models in many fields of appli-
cations, the 3D reconstruction of rooftops from aerial data, e.g.
LiDAR or photogrammetric point clouds, is a well studied sub-
ject of research. In this context, top-down, bottom-up and even
hybrid methods are employed. Most of these methods focus on
roof models without taking their superstructures, i.e. dormers
and chimneys, into consideration. Top-down methods are suffer-
ing from big structures which smear the estimated models wheras
bottom-up methods have difficulties to identify small structures
from the data. Roof structures such as dormers and chimneys rep-
resent outliers regarding to the according roof model. The occur-
rence of such outliers complicates the robust modeling of roofs.
Hence, our key idea is to examine the impact of such structures
on the roof determination in order to derive roof models with a
high accuracy. From an urban planning point of view and with

∗Corresponding author

a view to a more precise classification of the type of use, dorm-
ers are of great importance because they indicate the value of the
building and the type and intensity of its use.

a) b)

The main contribution of this paper is a novel approach which
classifies and reconstructs roofs and their structures based on de-
signed statistical features derived from probability density func-
tions (PDFs). The characteristic distortion of the density distri-
bution of the defects caused by dormers in comparison to the ex-
pected normal distribution is the starting point of our method.
The method is in particular able to detect and differentiate be-
tween gabled and shed dormers as depicted in Figure 1 a) and b)
respectively. To this aim, we implemented a simulation environ-
ment which enables us to analyze roof dormer parameters in a
systematic way. The implemented simulation toolbox allows for
the generation of point clouds and gives the possibility to gen-
erate various roof structure types with different parameters. The
simulated data, with different resolution and point densities, rep-
resents a good experimental basis to assess the influence of these
parameters on the reconstruction of roof models. Besides, roof
models with and without outliers can be intensively investigated
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Figure 1. Roof models with different dormer types: a) gabled
dormer and b) shed dormer.
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and compared before classifying them from real data using a-
priori knowledge derived from the PDFs. In this context, the key
idea in our paper is the exploitation of latent knowledge encoded
in probability density functions in order to distinguish between
roof models and the otherwise challenging structures which have
been neglected up to now in most approaches.

Our approach consists of a hierarchical pipeline which comprises
the detection and the classification of roof structures in 3D point
clouds followed by a semantic segmentation using a clustering
method and finally the reconstruction of the identified objects.
In this context, a variety of methods such as support vector ma-
chines (SVM) for the classification, DBSCAN for the density
based clustering and RanSaC for the roof reconstruction are ap-
plied. The remainder of this paper is structured as follows: Sec-
tion 2 gives insights into the most related research. Section 3
elaborates our approach consisting of four main parts: the simu-
lation of roof structures, their classification, the segmentation of
roof point clouds and the reconstruction of the identified objects
which are presented in sections 3.1, 3.2, 3.3 and 3.4 respectively.
Section 4 introduces our conducted experiments and discusses
the achieved results. The paper is summarized and concluded in
section 5.

2. RELATED WORK

Many researchers dealt with the reconstruction of roofs and their
superstructures. Vosselman et al. (2001) combined point clouds
and ground plans for the reconstruction of 3D building mod-
els based on Hough transform including dormers and chimneys.
Pu and Vosselman (2009) presented a knowledge-based recon-
struction method of building models from terrestrial laser scan-
ning data. The general problem, particularly for data-driven ap-
proaches, is the challenging reconstruction of dormers, since they
are representing a small part of the observations. Kada and Wich-
mann (2013) presented a feature-driven based approach for the
modeling of 3D buildings. Their method detects low-level roof
structures, e.g. dormers, using sub-surface segmentation of the
input point cloud. Henn et al. (2013) proposed an enhanced ver-
sion of RanSaC combined with a hierarchical classification using
support vector machines leading to a robust roof model estima-
tion even from sparse LiDAR data. The authors of this paper
did, however, not explicitly consider roof superstructures such as
dormers. In the sense of RanSaC, huge dormers on the roof rep-
resent outliers which will be closely investigated in our paper.

Our approach draws upon probability density functions which are
used to design suitable features for the classification of roof struc-
tures. To this aim, a possible issue to address is to compare the
PDFs to each other. In this context, Sakurai et al. (2008) intro-
duced a method which compares two distributions using sym-
metric and asymmetric Kullback-Leibler divergence as signifi-
cant value.

The analysis and the interpretation of point clouds has been inten-
sively investigated. Ioannou et al. (2012) introduced an operator
based on normal vectors for object recognition in point clouds.
They propose the difference of normals (DoN) as a distinct mea-
sure for the description of point cloud characteristics depending
on a parametrized neighborhood. Jones and Aoun (2009) used
histograms based on the angular relationships between a subset
of normals for the identification of object classes in a 3D point
cloud.

As mentioned, to study the effect of variable parameters of roofs
and their structures, our paper is based on own simulation en-
vironment which generates building models with synthetic point
clouds. A related paper for the generation of LiDAR point clouds
has been presented by Lohani and Mishra (2007).

3. METHODOLOGY

This section is presenting an overview on our approach and its
related theoretical background. The main components of our
method consist of simulating the data, classifying of the roof
structures, clustering of the points of these structures and finally
their reconstruction.

3.1 Simulation of roof structures

In order to examine and analyze the impact of probability density-
based features on the identification and the reconstruction of roofs
and their structures, we implemented a building and laser scan-
ning simulation toolbox. On the one hand, the simulation envi-
ronment consists of a component which allows to generate vir-
tual building models, in particular roofs and roof structures as
depicted on the top of Figure 2. On the other hand, the second
component consists of a laser scanner simulator which allows for
the generation of aerial LiDAR point clouds with different set-
tings, e.g. resolution among others (cf. Figure 2 on the bottom).

3.2 Classification of roof structures

An important step in our approach is the classification of rooftops
and their superstructures, e.g. dormers. To this aim, a skilful
choice of discriminant features and predictors is of high impor-
tance. The key idea of our method is to design and derive suitable
features based on probability density functions. The behaviors
of the PDFs are characterizing different roof objects which con-
tributes to their discrimination. To this end, we considered dif-
ferent one-dimensional measures, e.g. roof inclination, derived
from the 3D input point cloud. Based on these measures, each

Figure 2. Front-end of the simulation toolbox. Building simulator
(top) and laser scanning simulator (bottom).
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PDF is estimated using a non-parametric kernel density estima-
tion (KDE) (Wand and Jones, 1994).

Roof model residuals. For the classification of dormers, the first
measure which we consider is the probability density of the resid-
uals of the belonging roof model. This assumes the availability
of pre-defined roof models. Accurate roof models allow for an
accurate determination of the residuals. Since roof structures rep-
resent a white noise in the 3D point cloud, the PDF of the residu-
als is a good tool which reflects their properties. In this context,
the residuals are determined using RanSaC (Fischler and Bolles,
1981) as part of the model-driven roof reconstruction method of
(Henn et al., 2013). Since the accuracy of the underlying roof
model is correlated to the geometry of the belonging superstruc-
ture, we investigated their impact on the learning performance
including them and in their absence as predictor.

Inclination. Likewise a PDF of the inclination of each point from
the point cloud is calculated. To this aim, a surflet (Wahl et al.,
2003) is considered, consisting of a pair of a point from the point
cloud and its normal vector which represents an approximated
plane of its k-neighborhood. We choosed k = 5 in order to take
small structures into account. Based on a singular value decom-
position (SVD) (Förstner and Wrobel, 2016), the five points with
coordinats [xi, yi, zi] are used to fit a plane whose normal vector
is the eigenvector vi associated to the smallest eigenvalue σi of
the following matrix A:

A =

x1 y1 z1 1
...

...
...

...
x5 y5 z5 1

 = UΣVT . (1)

The inclination is then calculated based on the z-axis of the coor-
dinate system and the surflet for each point.

Mean squared error (MSE). We built also the mean squared
error of several measures such as the mentioned point inclination.
Figure 3 illustrates a roof point cloud colored according to the
MSE values of the point inclinations. The roof on the top includes
a shed dormer whereas a gabled dormer is a part of the roof in the
bottom.

Angles between normal vector pairs. Following the method of
Jones and Aoun (2009), we considered surflet pairs and derived
bilateral angles between them. Apart from the angle γ between
the z-axis and a normal vector which is already incorporated in
the calculation of the inclination, two further angles α and β are
considered as illustrated in Figure 4.

Difference of normals (DoN). We make use of the method of
Ioannou et al. (2012) which developed an operator dealing with
huge unstructured point clouds. This operator calculates the dif-
ference of surflets of a given point in two differently sized neigh-
borhoods. This gives the possibility to model the sensitivity re-
garding to small structures. Figure 5 summarizes the idea of the
difference of normals depending on a parametrized radius. In or-
der to acquire a one-dimensional measure, we computed the angle
between the resulting difference vector and the z-axis.

For the classification task, we designed a set of features in order
to discriminate between roof points and dormer points in a first
step and between different dormer types in a subsequent step. As
stated, we focus in this paper on features based on probability
density functions. In this sense, we derive PDFs based on the
five mentioned one-dimensional measures for each point from the
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Figure 3. Point cloud colored according to MSE values of the
point inclinations. Shed dormer (top) and gabled dormer (bot-
tom).

point cloud. These measures represent the basis for the derivation
of the features needed to perform the classification process for the
discrimination between the roof structures. In this context, the
derived PDF of each measure using KDE is closely investigated
considering the following properties:

Skewness. One important property of a probability density func-
tion is its skewness which influences its shape and in particular its
symmetry. The skewness of the PDF of a data set of n measures
xi is defined as follows (Von der Lippe, 2018):

S =
1

n

∑
i(xi − x)

3

s3
, (2)

where x is the mean of xi and s3 their standard deviation. Ac-
cording to the value of S, we distinguish between left skewed
(negative) and right skewed (positive) distributions. A value of
zero indicates a symmetric distribution.

The excess kurtosis. A further property of a PDF is the kurtosis
which describes its steepness. This measure is calculated based
on the fourth moment of the underlying data xi:

K =
1

n

∑
i(xi − x)

4

s4
− 3. (3)

γ

β

α

Figure 4. Considered angles between surflet pairs.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-177-2019 | © Authors 2019. CC BY 4.0 License.

 
179



Figure 5. Difference of normals (Ioannou et al., 2012).

The sign of K is an indicator of the steepness. A positive value
is characterizing fat-tailed distributions whereas negative values
stand for thinner-tailed ones. Symmetric distributions, e.g. nor-
mal distribution, have a kurtosis with a zero value.

Kullback-Leibler divergence. We are also interested in com-
paring two different probability density functions contributing to
their discrimination. In this context, the Kullback-Leibler diver-
gence (Kullback and Leibler, 1951) is a suitable measure which
quantify how a PDF p is different from another PDF q (Shlens,
2014) based on the information gain as follows:

DKL(p‖q) =
∑
i

pi · log2
pi
qi
. (4)

The formula 4 is specifying the information lost in bits when q is
applied to approximate p. A symmetric Kullback-Leibler diver-
gence is defined further as the following (Sakurai et al., 2008):

DKLS(p‖q)) =
∑
i

(pi − qi) · log2
pi
qi
. (5)

Parameters of the PDF. A probability density distribution fitting
leads to an approximated parametric PDF of the estimated PDF
acquired from the non-parametric kernel density estimation. In
this sense, if a normal distribution can be assumed, the parameters
µ and σ are exploited and taken as features. Following the spirit
of Dehbi and Plümer (2011), an arbitrary distribution which fits
the data best can be determined after performing statistical tests,
e.g. chi-squared.

Quantile. Further properties of a PDF are reflected by their quan-
tiles dividing the range of the PDF into equally probable contin-
uous intervals. A prominent quantile measure is the well known
median. In this context, we partitioned the distribution range in
five equally sized parts. We considered the following quintiles
(5-quantiles): 0.2, 0.4, 0.5, 0.6 and 0.8 which is illustrated ex-
amplarily for a normal distribution in Figure 6. These values take
part in the feature space for the classification.

normal distribution

median

quintile

Figure 6. Quintils of a normal distribution.

diff. function

global min.

KDE
normal

Minimum of the difference function. This measure is the global
minimum of the difference of two distributions. In this case, a
normal distribution is assumed. In this sense, a normal distri-
bution is fitted representing a reference distribution of the PDF
estimated by KDE. The difference between these two distribu-
tions is then calculated providing its global minimum as addi-
tional feature. Figure 7 illustrates a PDF and its approximated
normal distribution together with the resulted difference function
and the according global minimum.

Šikonja and Kononenko,
2003; Kononenko et al., 1997) allowing the selection of the best
features with regard to the given class. In this way, redundant fea-
tures and in particular unsuitable ones are a-priori eliminated. In
the second step of our hierarchical classification, only roofs with
superstructures are considered. At this stage, we focus on the dis-
crimination between different dormer types, in particular gabled
and shed dormers. Since we noticed the existence of roofs with
both types, we followed a multi-class classification. We consid-
ered three classes: “roof with gabled dormer”, “roof with shed
dormer” and “roof with gabled and shed dormer”. Among oth-
ers, features related to residuals acquired from an a-priori model-
based roof estimation are used in this supervised learning step.

3.3 Segmentation of the point cloud

The last section provides classified roofs including the dormer
types. Towards the reconstruction of these acquired objects, we
perform a semantic segmentation of the point cloud regarding to
the dormer types. To this aim, we conduct a clustering using the
density based spatial clustering of applications with noise (DB-
SCAN) algorithm (Ester et al., 1996). This corresponds to the
third step of our hierarchical method (cf. Figure 8). Compared
to other clustering methods, DBSCAN does not require the num-
ber of clusters to be a-priori known. Further, no assumptions on
the cluster shapes have to be made. In this context, we clustered

Figure 7. Characteristic deformation of the residual distribution
of a roof surface caused by a dormer. An expected normal dis-
tribution is taken as reference. Left: Difference function of both
distributions with the according global minimum. Right: PDF is-
sued from a KDE (blue) and its approximated normal distribution

(red).

Based on the pre-designed set of the mentioned features, we fol-
lowed a hierarchical approach for the classification of the roof
dormers as depicted in Figure 8. At first, we differentiate be-
tween roofs with and without roof structures in a supervised man-
ner using a binary classification. For this classification, we used
support vector machines (SVM) (Vapnik, 1998) as robust classi-
fier. To this aim, we labeled point regions belonging to different
roof objects in order to train the classifier. The learning is per-
formed using a 10-fold cross-validation based on simulated data
acquired from our implemented simulation toolbox and based on
real data from aerial LiDAR point clouds as well. In order to as-
sess the quality of the probability density based features, we per-
formed a feature selection using the Relieff algorithm which cal-
culates a predictor weighting (Robnik-
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again based on one-dimensional measures combined with loca-
tion information for the reconstruction later on. In the example

roof

dormer

roof

dormer

outlier

of shed dormers, Figure 9 shows a roof point cloud colored ac-
cording to the point inclinations on the right. The investigation
of the PDF of these inclinations reveals that this one-dimensional
measure turns out to be, among others, a good prior to distinguish
between roof and dormer points. The smaller peak is characteriz-
ing dormer points whereas the big one is belonging to roof points.
Since we calculated an angle for each point, the clustering results
can be associated with the spatial information of the point cloud
which is the basis for the reconstruction step.

3.4 Reconstruction of dormers

The point clusters acquired from the previous step can be used to
reconstruct the roof and dormer surfaces. The roof reconstruction

is performed using RanSaC (Fischler and Bolles, 1981) which is
expanded in order to consider different roof models based on a
catalog of roofs in the spirit of Henn et al. (2013). This derived
model can be compared with the roof model estimated from the
whole point cloud. In this manner, the influence of white noise
on the roof detection and their reconstruction can be investigated.
This enables us to compare models stemming from outlier-free
point clouds with those derived from point clouds including roof
structures. In particular, the simulated point clouds allow for the
comparison of these two models providing a true model as ground
truth.

The reconstruction of shed dormers is mainly performed using
Gauss-Helmert model (Förstner and Wrobel, 2016) estimating a
plane P based on the dormer cluster. The boundaries are acquired
from a minimal bounding rectangle mbr of the projected points
on the xy-plane in a first step. This mbr is projected back on
the plane P with a ridge parallelity constraint incorporating the
z-coordinates leading to the final dormer plane DP . The rear
edge of the shed dormer lies on the intersection of DP and the
roof surface. The edge corners are acquired by intersecting the
vertical planes with the roof plane. The last parameters of the
dormer, i.e. two bottom points, are derived by projecting the front
points on the roof plane. Gabled dormers can be reconstructed
using RanSaC incorporating a gable roof model and a subsequent
projection of the front points on the roof plane.

4. EXPERIMENTAL RESULTS

This section describes our experiments comprising the data set-
tings and the achieved results accordingly.

4.1 Data settings.

For our experiments, we generated training data consisting of
1700 objects including roofs with and without structures. The in-
clinations of the dormers vary between 15◦ and 45◦. Their widths
and depths are in the range from 0.5m to 4m corresponding to de-
tached houses as building type. The point cloud has an average
point cloud density between 6 points/m2 and 11 points/m2 which
corresponds to the resolution of the point cloud from the ISPRS
benchmark from Vaihingen (Rottensteiner et al., 2012) and an
annotated point cloud from three districts from Dortmund in Ger-
many respectively. In contrast to simulated point clouds, the real
data contains noise stemming from facade elements, chimneys or
even from other roof parts which have been inaccurately sepa-
rated. For the annotation of our real data, we make use of or-
thophotos of the roofs and their belonging footprints for the iden-
tification of roof and dormer types. Details to the data and ex-
periments on real data will be subject of a subsequent paper. For
our experiments, the LibSVM toolbox has been used (Chang and
Lin, 2011) with an RBF kernel.

4.2 Classification of roofs and dormers

Simulated data. The classification of synthetic data in roof ob-
jects with and without dormers turns out to be very successful.
Based on Relieff, the weighted ranking of the features selects
those based on the residual (R) distribution and inclination (I)
distribution as top predictors. Table 1 shows an excerpt of the
best features according to the feature selection. Both residual-
and inclination-based PDF features turn out to be good for this
classification step. These features have been used to train and test
the SVM classifier leading to the results summarized in Table 2.

Figure 9. 3D point cloud of a roof colored according to the incli-
nation of the points. Roof points (green) and shed dormer points
(red). The PDF of the inclination gives insight into the object

type.

Figure 8. Hierarchical classification and reconstruction of roof
structures
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Feature PDF
Kurtosis R
Minimum of difference function R
Symmetric Kullback-Leibler divergence R
Asymmetric Kullback-Leibler divergence R
2nd quintil I
Median I
Third quintil I
1st quintil I
2nd quintil R
1st quintil R
Mean I
Standard deviation R
Fourth quintil I
Skewness R
. . . . . .

The results of a 10-fold cross-validation as well as the test results
on unseen data led to an overall accuracy of more than 98% for
a noise amounting 7cm. Comparable results have been achieved
for a point density of 5.5 points/m2. For a noise of 14cm, the
class ”‘roof with dormer”’ is perfectly classified, poor results
have been however achieved for roof without dormers due to high
number of false positives. By varying the point density, we no-
ticed that the importance of the inclination related features is de-
creasing for smaller point densities with more noise which let the
classification relying on residual features which needs an a-priori
roof model as background knowledge. In order to analyze the
impact and the importance of residual information, the residual
related features are omitted. Consequently, the classification of
roof and dormer objects was unsatisfactory stating that the resid-
ual features are indispensable. In our sampled training objects,
we took care that we consider dormers and roofs with various pa-
rameters. In this context, we varied the width, depth, inclination
and the position of dormers on the corresponding roofs. For the
choice of the minimal and maximal shape parameter values of
dormers and their locations, we followed recommendations satis-
fying the regulations of the land building directive of the state of
North Rhine Westphalia in Germany. Figure 10 shows exemplary
the impact of the dormers width on the PDF of the residuals of a
gabled roof with the following dimensions 8m×12m×4m. Here-
with, the ridge is directed along the longest side of the roof. Not
only the variation of the dormer widths but also the variation of
other parameters have shown that the width of the residual’s PDF
is higher for bigger dormers. The bend in the PDF of the roof
without dormer is characterizing the ridge of the roof.

reference precision
with
dormer

without
dormer

results with
dormer

999 1 99.9%

without
dormer

0 400 100%

recall 100% 99.8% 98.9%

Feature PDF
Median I
2nd quintil I
3rd quintil I
Mean I
Symmetric Kullback-Leibler divergence R
1st quintil I
Excess R
Minimum of difference function R
4th quintil R

Real data. We applied the trained classifier from the simulated
point cloud on 58 buildings from the mentioned real data from
Dortmund. This leads, however, to poor results. For this reason,
we trained a new classifier on the real data using the same fea-
tures and applying a new feature selection. In this manner, we
got very good and promising results which be subject of an own
subsequent paper with deeper empirical discussions and explana-
tions.

4.3 Classification of dormer types

Since dormer types are hardly distinguishable in orthophotos due
to shadows and insufficient resolution we used only simulated
data for the classification of the dormer types. We performed a
multi-class classification to distinguish between roofs including
shed dormers or gabled dormers or both of them. The feature
selection revealed that residual and inclination based features are
also important for this task as depicted in Table 3. Particularly,
we stated that the inclination is discriminative for shed dormers
rather than gabled dormers. Omitting the residual distributions
leads to the same effect on the results as it was the case in the
previous classification task. The classification results are shown
in tables 4 and 5 for different point densities, namely 11 and 7.5
points/m2 respectively.

reference precision
gabled deshed both

gabled 403 20 15 92.0%
results deshed 13 401 10 94.6%

both 0 1 242 99.6%

recall 96.9% 95.0% 90.6% 94.7%

We performed also a binary classification for the discrimination
between the two dormer types. For this task, the kurtosis of the
residuals and the α-values turn out to be the most important fea-
tures. Features issued from the distribution of DoN, α- and β-

reference precision
gabled deshed both

gabled 397 41 34 84.1%
results deshed 28 382 12 90.5%

both 4 0 211 98.1%

recall 92.5% 90.3% 82.1 89.3%

Table 3. Feature selection for the multi-class classification of
dormer types (gabled, shed and both) based on simulated data.

I: inclination distribution, R: residual distribution.

Table 1. Feature selection for simulated data for the classification
of roofs with and without structures. I: inclination distribution,

R: residual distribution.

Table 4. multi-class classification results of dormer types using a
10-fold cross validation. Point density: 11 points/m2.

Table 2. Results of the binary classification of roofs and dorm-
ers based on simulated data. Point density: 11 points/m2, noise:

7 cm.
Table 5. multi-class classification results of dormer types using a

10-fold cross validation. Point density: 7.5 points/m2.
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Figure 10. Impact of varying dormer widths (left) on the PDF of residuals (right).

Feature PDF
Kurtosis R
Kurtosis α
Standard deviation R
Minimum of difference function R
Mean I
Skewness I
1st quintil I
Asymmetric Kullback-Leibler divergence DoN
Symmetric Kullback-Leibler divergence β
Mean R
Symmetric Kullback-Leibler divergence DoN
2nd quintil α
Symmetric Kullback-Leibler divergence I

angles turn out to be also required. Table 6 shows the most rel-
evant features for this classification task. In a further step, we
incorporated chimneys in the simulated data for the assessment
of their influence on the classification. The classification results
revealed that these structures did not have a significant impact on
the classifier performance.

4.4 Clustering and reconstruction of roof structures

The use of residuals as measures in DBSCAN leads to the most
successful results. That means, however, that model-knowledge
of the roof is required. Other one dimensional measures have
been used to segment the point cloud without requiring the knowl-
edge of the roof model. The inclinations and their MSEs are in
this sense empirically the most appropriate ones. They are, how-
ever, sensitive to noise and influenced by points near the roof
ridge as illustrated by Figure 11. In order to deal with this is-
sue, a second DBSCAN clustering has been performed based on
the 3D coordinates of the points leading to good results for not
too sparse point sets. Especially, dormer positions are relevant at
this stage. Dormers near to ridge are falsely associated to ridge
regions for a low point cloud density. All in all, for a density
of 11 points/m2 good clustering results are achieved enabling a
reconstruction of dormers subsequently. The reconstruction of
the dormers depends on the clustering step which in turn depends
on the dormer positions and the point density. This influences the
determination of the minimum bounding rectangles enclosing the
dormer points. Outliers lead in this context to oversized dormers.

Figure 12 illustrates the reconstruction results of shed dormers
for different point densities. Red points have been acquired af-
ter performing the second DBSCAN clustering based on spatial
information of the points.

In order to assess the impact of dormers and roof superstructures
in general on the quality of roof models estimated by RanSaC, we
compared the deviation of inclinations between such roof mod-
els and reference models. The results are summarized in Ta-
ble 7. It can be stated that roof models without dormers are
identified more accurately than those including dormers which
confirm their influence on the estimation. A higher noise does
not have a negative impact on the resulted models which explains
the robustness of RanSaC against noise.

point density roof with dormer roof without dormer range noise
[Punkte/m2] µ [◦] σ [◦] µ [◦] σ [◦] [cm]

11 −0.04 0.30 −0.14 0.23 14
11 −0.40 0.54 −0.45 0.40 7
7.7 −0.39 0.51 −0.45 0.37 7
6.6 −0.40 0.50 −0.42 0.39 7
5.5 −0.41 0.51 −0.41 0.40 7
4.4 −0.40 0.54 −0.46 0.38 7
3.3 −0.39 0.51 −0.45 0.40 7

Figure 11. Point cloud clustering based on inclination and mean
square error (MSE). Ridge points share the same cluster with

dormer points.
Table 6. Feature selection for the binary classification of dormer
types (gabled and shed) based on simulated data. I: inclination

distribution, R: residual distribution.

Table 7. Deviations between the estimated roof models using
RanSaC and the true models. Mean and standard deviation of the
differences with regard to the inclinations depending on the point

density and noise are calculated.
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5. CONCLUSION AND OUTLOOK

This paper introduced an approach for the automatic classifica-
tion and reconstruction of roofs and their structures. A hierar-
chical classification method is followed which discriminates be-
tween roofs and dormers followed by a classification of different
dormer types subsequently. Both classification steps leads to very
good results up to 99%. The key idea is the use of skilful features
issued from probability density functions (PDFs) of specific mea-
sures from the point cloud. PDFs of inclinations and the residuals
of model-based generated roofs via RanSac are used among oth-
ers. Even without residual information, a clustering using DB-
SCAN leads to the identification and reconstruction of dormers.

The classification and reconstruction results are presented based
on simulated and real data. The paper also introduces an imple-
mented simulation toolbox which gives the possibility to generate
different roof and dormer models with various and controlled pa-
rameters. For future work, additional roof and dormer types can
be considered. Correspondingly, the investigation of additional
features is envisaged.
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Robnik-Šikonja, M. and Kononenko, I., 2003. Theoretical and empirical
analysis of relieff and rrelieff. Mach. Learn. 53(1-2), pp. 23–69.

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S.
and Breitkopf, U., 2012. The isprs benchmark on urban object clas-
sification and 3d building reconstruction. ISPRS Ann. Photogramm.
Remote Sens. Spat. Inf. Sci 1(3), pp. 293–298.

Sakurai, Y., Li, L., Chong, R. and Faloutsos, C., 2008. Efficient distri-
bution mining and classification. In: Proceedings of the 2008 SIAM
international conference on data mining, SIAM, pp. 632–643.

Shlens, J., 2014. Notes on kullback-leibler divergence and likelihood.
arXiv preprint arXiv:1404.2000.

Vapnik, V. N., 1998. Statistical learning theory. A Wiley-Interscience
publication, Wiley, New York, USA.

Von der Lippe, P., 2018. Deskriptive Statistik. Walter de Gruyter GmbH
& Co KG.

Vosselman, G., Dijkman, S. et al., 2001. 3d building model recon-
struction from point clouds and ground plans. International archives
of photogrammetry remote sensing and spatial information sciences
34(3/W4), pp. 37–44.

Wahl, E., Hillenbrand, U. and Hirzinger, G., 2003. Surflet-pair-relation
histograms: a statistical 3d-shape representation for rapid classifica-
tion. In: Proceedings of Fourth International Conference on 3-D Dig-
ital Imaging and Modeling, 2003. 3DIM 2003, pp. 474–481.

Wand, M. P. and Jones, M. C., 1994. Kernel smoothing. Crc Press.

Figure 12. Reconstruction of a shed dormer with different point densities: from left to right 11, 5.5, 4.4 and 3.3 points/m2. Recon-
structed dormer (black). MSE and inclination based clustering results (red). Clustered region after new clustering of the red points

based on their 3D coordinates (green).

REFERENCES

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. and ltekin, A., 2015.
 Applications of 3d city models: State of the art review. ISPRS
Inter- national Journal of Geo-Information 4(4), pp. 2842–2889.

Revised August 2019

Wang, R., Peethambaran, J. and Chen, D., 2018. Lidar point clouds to 3-d
urban models : a review. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 11(2), pp. 606–627.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-177-2019 | © Authors 2019. CC BY 4.0 License.

 
184




