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ABSTRACT:

Tide height depends on both long-term astronomical effects that are principally affected by the moon and sun and short-term
meteorological effects caused by severe weather conditions which are very important tasks for human activities, safe marine
navigation in shallow areas, oceans and coastal engineering work. Conventional tidal forecasting techniques are based on harmonic
analysis, which is a superposition of many sinusoidal constituents with three parameters amplitudes, Phase and frequencies using the
least squares method to determine the harmonic parameters. However, harmonic analysis required a large number of parameters and
long-term tidal measured for precise tidal level predictions. Furthermore, what seems to stand out by the other researchers on
traditional harmonic methods, was its limitation when short data are involved and rely on based on the analysis of astronomical
components and they can be insufficient when the influence of non-astronomical components such as the weather, is important.
Therefore, conventional harmonic analysis alone does not adequately predict the coastal water level variation, in order to deal with
these situations and provide predictions with the desired accuracy, with respect to the length of the available tidal record, an
alternative approach has been developed by various tidalist. In this study the state - of - art for tidal analysis and prediction
techniques that have proven to be successful in a variety of circumstances have been reviewed in a systematic and consistent way for
holistic understanding with a view to provide a reference for future work, showing their main mathematical concepts, model
capabilities for tidal analysis and prediction with their limitations.

1. INTRODUCTION

Tides are alternating variation of the sea level as influence
mainly by astronomical component such as gravitational forces
exerted by the moon, sun and the rotation of the earth
(Doodson, 1954; Godin, 1972; Shum et al., 2001; Pugh and
Woodworth, 2014; Haigh, 2017). However, other factors also
reflect non-astronomical sources such as the wind, weather,
seafloor topography and local water depth (Devlin, 2016; West
et al., 2016). The Newton gravitational theory gives a wider
understanding that leads to the discovery and understanding of
the tidal phenomena. Therefore, tides are the periodic
phenomena that can be express as the superposition of
sinusoidal function each function has three parameters, namely
frequency, amplitude and phase (Cai et al., 2018).

Coastal waterways play a critical economic role and affect
shipping, oil and natural gas production, recreation tourism,
fisheries and environmental habitat. Precise knowledge and
understanding of tidal and subtidal water level fluctuation and
circulation along the coastal water is important for safe marine
navigation, water quality emergency management such as oil
spill response, search and rescue operation and evacuation
during extreme weather events. Due to speedy development on
the coastal infrastructural development and coastal engineering
projects recently in the world, there is a need for precise
information on site-specific water level height. Therefore, it’s
quite obvious to have a reliable water level prediction tool that
can cater the need for coastal engineering port and harbour
activities.

Over the years a series of methodology for tidal analysis and
prediction to ameliorate the accuracy of water level prediction
have been established among the most popular one is the
classical harmonic analysis which was established by Kelvin
and improved by Darwin, Doodson, and others. This study
tends to further examine and review up to date coverage of tidal
analysis and prediction modelling techniques that have
demonstrated to be successful in a variety of circumstances with
a view to providing a broad description of the existing state-of-
the art in the field. A systematic and consistent way was
adopted to review the classical as well as the novel methods
through a number of web-based articles from relevant
databases, such as Web of Science, Scopus, ScienceDirect,
IEEE Xplore Digital Library, and Elsevier were accessed
through search engines, which lead to the eventual selection of
50 tidal analysis and prediction modelling research articles that
were published.

The present paper is organized as follows. The literature on
tidal analysis and forecasting models’ approaches are presented
in Section 2. Summary of the strengths/limitations of the
previous researches were discussed in Section 3. Conclusion
and future direction of tidal analysis and prediction are covered-
up in Section 4.

2. AN OVERVIEW OF TIDAL ANALYSIS AND
PREDICTION MODELLING TECHNIQUES

There have been numerous advances in tidal analysis and
prediction (Imani et al., 2018), a standout amongst the best and
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generally utilized methodologies has been and continue to be,
the classical harmonic analysis where in the energy at explicit
tidal frequencies is dictated by a scientific fitting system,
typically least squares (Zhang et al., 2017). However, this
review, focus just on tidal analysis and prediction modelling
approaches from the early stage of a single technique to present
time of hybridization. An early clarification of tide can be
traced back to 1616 when Galileo Galilei ascribed the tide to
water splashing due to the earth’s movement around the sun, at
the same time Johannes Kepler made some suggested based
upon ancient observation and correlation that the moon caused
the tide (site), Isaac Newton (1642-1727) was the first person to
explain tides by developing his universal law of gravitation and
equilibrium tidal theory. Isaac Newton used his theory of
universal gravitation to establish the tide-generating forces as
due to the moon and sun attractions to the rotating earth. Pierre-
Simon Laplace (1749-1827) established the dynamical theory
known as equilibrium theory of tide based on Newton’s work,
which pronounced the ocean’s real response to tidal forces.

The Laplace tidal equations are still in use today William
Thomson (1824-1907) developed the concept of harmonic
analysis by application of Fourier analysis to the tidal motions.
A concept which was further developed and extended by
George Darwin: Darwin's (1845-1912) Darwin can be traced
back as the funder of classical tidal harmonic analysis which
was further refined by Doodson (1972). Doodson recognized
388 different tidal frequencies and formulated a practical system
for specifying the different harmonic components of the tide-
generating potential, the Doodson Numbers, a system still being
used today to signify the different tidal species and constituents.
Since the mid-twentieth century further analysis has created a
lot a greater number of terms than Doodson's 388. Around 62
constituents are of adequate size to be considered for
conceivable use in marine tide prediction, yet in some cases a
lot less even than that can predict tides with improved precision.
Table 1 shows the major tidal constituents contributing to the
astronomical tide

. Table 1. Major Harmonic Constituent

Symbol Constituent name Period (T)

M, Principal lunar semidiurnal | 12.42

S2 Principal solar, semidiurnal | 12.00

N2 Elliptical lunar, semidiurnal | 12.66

K2 Declinational luni-solar, | 11.97
semidiurnal

K1 Declinational luni-solar, | 23.93
diurnal

o1 Principal lunar, diurnal 25.82

Sa Meteorological, annual Year

Continuously other tide analysis and prediction techniques
based on Harmonic analysis were largely proposed in the
literature. The most relevant is the work of (Guo et al., 2018) to
capture the slow variation of tidal amplitudes and phases, based
on variations on a timescale of multiple months or longer, using
an empirical Harmonic Analysis Model. Harmonic analysis of
tidal and sea-level data was implemented by. (Stephenson,
2017) to estimate up to 409 different harmonic tidal
constituents, considering daily nodal corrections in Australia.
(Badejo and Akintoye, 2017) apply the least squares tidal

harmonic analysis to determine harmonic constants and were
substituted into a tidal prediction model to predict hourly tidal
data and tidal predictions at 5 minutes’ intervals at Lagos
harbour Nigeria. The University of Hawaii Sea Level Center in
collaboration with the National Oceanographic Data Center
(NODC) developed a tidal analysis and prediction tool based on
harmonic tidal analysis using linear least squares named “The
Sea Level Processing Package” (SLPR2), the tide prediction
algorithm of SLPR2 uses a maximum of 68 harmonic
constituents which provides reliable sea level information
estimate of a specific location.

The predictive capability of SLPR2 for a one-year period was
investigated by (Rose and Bhaskaran, 2015) in the head Bay of
Bengal region located along the east coast of India. And the
results from SLPR2 indicate considerable correlation between
predicted tide with the measured tide. (Foreman et al., 2009)
develop and test a more versatile harmonic analysis technique
that can accept randomly sampled data and embed the nodal and
astronomical argument corrections and multiple inference
calculations into an overdetermined matrix that is solved using
singular value decomposition (SVD) technique. Many other
researchers such as (Amiri et al., 2014; Najibi, et al., 2013;
Mousavian and Hossainali, 2012; Ew and Ugust, 2003;
Pawlowicz et al., 2002; Jay and Kukulka, 2003) apply harmonic
analysis technique.

Tidal analysis and prediction technique based on Kalman
filtering were largely proposed in the literature. The most recent
is the work of (Slobbe et al., 2018) apply the Kalman filter
approach to combine a hydrodynamic model to derive lowest
astronomical tide (LAT) surface with tide gauge records in the
Dutch North Sea and Wadden Sea, by using the Kalman filter
approach Slobbe was able to obtained a smooth reference
surface of the Dutch Wadden Sea that is LAT at the North Sea
boundary within a few centimetres. (Okwuashi and Olayinka,
2017) make use of the Kalman Filter. Okwuashi based his work
on seven harmonic constituents: M2, S2, N2, K2, K1, O1 and
P1, to compute tidal form factor F = 0.1955 which shows a
good indication that the tide is semi-diurnal, the result of the
experiment can be trusted, since Nigerian coastal waters are
characteristically semi-diurnal in nature. Sea level prediction
based on harmonic model with their parameter estimation by the
Kalman filter algorithm was tested for Macau by (Choi et al.,
2000).

A Kalman filter method was used for tidal analysis and
prediction using a short length data (a few days) of tide
measurements to predict tide levels over a longer time by (Pei et
al., 1996) the result of the tide levels predicted by the Kalman
filter approach method was in good agreement with the
observed data at the Kaohsiung Harbour, Taiwan. A tide gauge
data from six selected islands in the tropical Pacific to predict
sea level height using Kalman filter was tested, by (Miller and
Cane, 1989) The error model is a simple covariance function
with parameters fit from the observed differences between the
tide gauge data and the model out output. The calibrated error
model is used in a Kalman filtering scheme to generate monthly
sea level height anomaly maps. The results were quite
encouraging.

Harmonic techniques have been discussed in this literature, but
its accuracy depends entirely on long-term tidal record data.
This is the major shortcoming of the harmonic technique.
However, tidalist applied the Kalman filter model to determine
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harmonic parameters with a limited data. However, the Kalman
Filter model is only relevant for the short time prediction.

Other technique such as artificial neural network, back
propagation neural network and wavelet transformation were
proposed in the literature. (Tsai and Lee, 1999a) was first to
apply Neural network for tide forecasting by utilizing the field
data of both diurnal and semidiurnal tides. However, their
model was applied for the forecast of diurnal and semi-diurnal
tides, mixed tides are bound to happen in the field than diurnal
and semi-diurnal tides. As the need for accurate ocean tide
models has become increasingly important over the recent
years, an application of the back-propagation neural network
using short-term measurement data for long-term tidal
predictions was presented by (Lee, 2004) at Taichung Harbor in
Taiwan.  Back-propagation neural network technique
proficiently predicts the long-term tidal levels when comparison
was made with a conventional harmonic technique. Tide gauge
data collected at the town of Burgas, located at the western
Bulgarian Black Sea coast for the period seven years (1990-
2003) were used as input data to carry out a several tests of
different Artificial Neural Network (ANN) architectures and
learning algorithms to assess their applicability as competitive
methods to the harmonic analysis by (Pashova and Popova,
2011).

Their founding indicate that the artificial neural technique is
appropriate for short and long-term forecasts of the sea level
prediction and sea level parameter identification. (Lee and Lee,
2014) presents a model of coastal high and low water prediction
using feed forward back-propagation (FFBP) neural network
and generalized regression neural network (GRNN), to coastal
high and low water level prediction. Lee made use of 30-days of
hourly tidal and five main tidal constituents to obtain a good
result. However, prediction for one-month and one-year period
indicates that the network models are unable to predict the high
and low water accurately. The results for one—-month prediction
provide some level of effective prediction, but for a one—year
simulation the result has much larger errors. Tidalist such as
(Makarynska and Makarynskyy, 2008), (Meena and Agrawal,
2015), (Deo and Chaudhari, 1998), (Muhammad et al., 2015)
all made the utilization of Atrtificial Neural Network (ANN)
model for tidal analysis using the short-time water level data as
an alternative to conventional harmonic analysis method.
Previous study shows that Artificial Neural Network (ANN) is
found to be an efficient technique in forecasting the tidal data
time series for a short duration, however, the ANN model
remain site specific and did not ameliorate the accuracy of the
predicted tide when long-time prediction is required with a
short data.

To understand the numerous divergence of tidal phenomena
from an assumed statistical stationarity or exact periodicity
inherent in traditional harmonic and other tidal methods,
(Flinchem and Jay, 2000) introduces Wavelet Transform for
Tidal Analysis Methods “Use of wavelets allows determination
of the degree of non-stationarity present in time series, such as
estuarine and shelf currents, usually treated as stationary.
Wavelets also provide a consistent analysis of tidal and non-
tidal variance, a feature often essential for dynamical analyses
of non-stationary tides”(Flinchem and Jay, 2000). Wavelet
analysis provides a consistent, linear analysis of tidal and non-
tidal variance and reveals features that harmonic analysis on a
Fourier transform approach could not elucidate. (El-Diasty and
Al-Harbi, 2015), proposed and developed highly nonlinear and
efficient wavelet network model for accurate water levels

modelling and prediction using short water level measurements
with meteorological effects. The performance accuracy of the
developed wavelet network model shows that, the differences
between water level measurements and the modelled predicted
values, fall within the =5 cm and +5 cm range and root-mean-
squared (RMS) errors fall within 1-6 ¢cm range. A new method
named “Inaction method” (also referred to as a “line-pass”
filter, in the filtering language) for predicting short-term tidal
levels was recently introduced by (Cai, and Wang, 2018). The
“Inaction method”, is based on normal time frequency
transform (NTFT) which is another name for normal morlet
wavelet transform, can recognize and extract harmonic/quasi
harmonic components of a tidal signal without an inverse
transform. Tide gauge measurements from Quarry Bay, Hong
Kong was tested and the results demonstrate the capacity of the
“Inaction method” to generate a short-term tidal level forecast
based on correlation coefficient (0.92-0.99), root mean square
error (about 4%-8% of the tidal range). However, the results
also show that the prediction was worse as the lead time
increases. So, “Inaction method” is only appropriate for the
short-term tidal level predictions.

Tidal analysis composed of astronomical tide parts caused by
celestial bodies’ movement and the non-astronomical tide parts
caused by various meteorological and other environmental
factors, due to several features that differentiate tidal analysis
from most other geophysical applications of time-series analysis
resulting to the disturbance factors of tidal level which are very
intricate. To ameliorate the accuracy of tidal analysis and
prediction tidal researchers have shifted their research work
toward hybrid modelling which is the current-state of -the- art
The most recent and up to date is the work of (Li et al., 2019) In
action method (IM) is combined with lease square estimation
(LSE) to predict long-term tidal levels by Sida Li.

The results showed that, the tidal level predictions using the
LSEIM were enhanced in accuracy by 9—15mm with a lead time
of two months, with respect to those using purely LSE. Water
level height was inferred by making the first-order difference
with the raw datasets obtain at Anging—Wuhu—Nanjing of the
Yangtze River by (Zhong et al., 2019), Zhong developed a
hybrid model of an artificial neural network with Kalman filter
for water level forecasting. The Hybrid model predictions were
satisfactory. Aside from, some discrepancies during the flood
and dry seasons when the field observations show severe
variations. (Liu, and Zhu, 2019) proposed a combined tidal
forecasting model based on harmonic analysis and
autoregressive integrated moving average support vector
regression (ARIMA-SVR). Liu proposed hybrid model to
ameliorate the low precision associated with single prediction
models.

However, harmonic analysis as a part of the combined model
has the problem of the high cost of obtaining large amounts of
data from on-site monitoring equipment. (Wang and Yuan,
2018) explore a more advanced method for forecasting tide
levels of storm surge caused by typhoons, on the basis of
successive five-year tide level and typhoon data at Luchaogang,
China, a BP neural network Hybrid model was developed by
Wang using six parameters of typhoons as input parameters and
the relevant tide level data as output parameters, their results
have shown that the hybrid approach has higher accuracy in
forecasting tidal level of storm surge caused by typhoons. (El-
diasty et al., 2018). Developed a hybrid harmonic analysis and
wavelet network (HA-and-WN) model for accurate sea water
level prediction.
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To ameliorate the general accuracy of tidal prediction and
improve the low accuracy of a single harmonic analysis, (Imani
et al., 2018) used another hybrid approach called extreme
learning machine and relevance vector machine for sea level
prediction at chiayi coast, Taiwan. A hybrid prediction
mechanism was constructed by taking both advantages of
harmonic analysis and neural network by (Yin, et al., 2015).
(Vanlede et al., 2014) predicted tide at Scheldt (Belgium) using
a combination of harmonic tidal prediction with 1D hydraulic
modelling at Prosperpolder (a measurement station close to the
Dutch-Belgian border).

Vanlede uses harmonic tidal prediction at a station downstream
and 1D hydraulic modelling for the stations further upstream to
predict the vertical tide in the Sea Scheldt (Belgium), their
result shows, that the accuracy of the hybrid model however is
better than the difference that can be expected between the
harmonically predicted tide and the observed tide due to
meteorological effects. Beside that the accuracy at downstream
is naturally limited by the accuracy of the tidal analysis while
the accuracy at the upstream is further limited by the accuracy
of the hydraulic model used. (Karimi et al., 2013) presented a
predicted hourly sea level for Darwin Harbor, Australia using
two different, data driven techniques, Adaptive Neuro Fuzzy
Inference System (ANFIS) and Artificial Neural Network
(ANN).

2.1 Harmonic Analysis Model Approach

mathematically the tidal amplitudes and phase lags needed for
accurate tidal predictions are determined via conventional tidal
harmonic analysis approach of sea level records spanning a year
or more originally propose by Godin (1972). The tidal height h
at any time t can then be predicted from the superposition of the
sinusoidal tidal constituent amplitudes (Ay) and phase lags (gy),
along with their astronomical arguments (Vy), nodal factors (f)
and nodal angles (uy), as given by

n
htj) =29+ 2 fy o)Ay cos[a;k (tj —tO)+Vk (t0)+uk(t0)—gk:|+R(tj) (1)
Where h(t)) is the tidal height measurement at time t,
Z, is the mean sea level,
fx (to)) and uyx (to) are the nodal correction
modulation factors to amplitude and phase
correction,
Vi (to) is the astronomical argument at initial
epoch ty (12:00 UT Dec 31, 1899).
Ay and oy are the amplitude and angular speed

of constituent, respectively.
Ok is the phase lag which is relative to the

Equilibrium Tide at Greenwich.

The subscript k represents the kth tidal constituent. The
amplitude A, and phase angle gk are the so-called
harmonic constants.(Godin, 1972; Foreman and Henry,
1989).

2.2 Mathematical Concept of Kalman Filter model

The ideologies of the Kalman filter is based on an optimal
recursive estimate intended for data processing that uses
indirect, inaccurate and uncertain observations to infer the
parameters of interest (Seshadri, 2016, Peter, 1979). The KF
algorithm which is a powerful filter basically estimates the

current state of a dynamic system from incomplete noisy
indirect measurements (Persson and Sharf, 2012). The KF can
be applied to both linear and nonlinear processes/systems
(Bezrucéka, 2011). The Kalman Filter consists of a measurement
equation; transition equation; prediction equation and the
updating equation (Choi, Mok and Tam, 2000) as follows

Xt = FXe_q + Bput + W 2
X is the state vector containing the terms
required for the system at a time t
U, is the control input vector
F. is the state transition matrix, responsible for
applying the effect of each previous system state
parameter on to the current state.
B, is the control input matrix, responsible for
applying the effect of control input parameter on
the control parameter U,
W, is the Vector containing the process noise
terms.

Where

Two stages are involved in the Kalman filter algorithm they are:
Time update (prediction) and measurement update (correction).
The Kalman filter equations for the prediction stage are given

by
.
o = gt B ®

.
Pl = P “)

The measurement update equations are given by

X =X + Ky (4 — Hyix 5
th-1 Tt t(z —Hy t\tfl) ®)
P, =P, —K{HP 6
e ot U U ©

T T 1
Ki =P, H; (H{P, H; +R 7
U7 T 't ( gt t) 0

Where X is the Estimate State.

F is the State transition matrix.

U is the Control Variable.

B is the Control input matrix.

P is the State VVariance matrix.

Q is the Processing noise covariance matrix.

Z is the Measurement Variable.

H is the Measurement matrix.

K is the Kalman Gain.

R is the Measurement Noise covariance matrix.

The subscript t/t denote the current time period, while t-1/t-1
denotes the previous time period, finally t/t-1 refers to the
intermediate steps.
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2.3 The General concept of Artificial Neural Networks
Model

The origin of neural network was the bionomics. The natural
cerebrum comprises of billions of very interconnected neurons
forming a neural network. Human data processing relies upon
this connectionist arrangement of sensory cell. Based on the
advantage of this data processing, neural networks can easily
exploit the enormous parallel local processing and distribute
storage properties in the brain. The ability of biological neural
networks can be modeled generally through a mathematical
system called ANN by interconnecting a considerable lot of the
basic neurons (Tsai and Lee, 1999b). Therefore, inputs from a
multiple or single source are accepted by the neuron (Huang et
al., 2003), hence produces outputs by simple processing with a
predetermined non-linear function (Filippo et al., 2012) as
shown in Figurel. The primary characteristics of ANN can be
presented as (Recupero et al., 2013; Rumelhart, et al., 1988)

a) The ability to learn;

b) Distributed memory;

¢) Fault tolerance;

d) Parallel operation.

The principle of ANNs has been well documented in the
literature (Fausett, 1994; Bishop, 1995) only a brief outlook is
given in this section. Neural Network consist of a typical three-
layered network with an input layer (1), a hidden layer (H) and
an output layer (O) as shown in figure2, each layer consists of
several neurons and the layers are interconnected by sets of
correlation weights (Consoli et al., 2014; Lee, 2002). The
neurons receive inputs from the initial inputs or the
interconnections and produce outputs by transformation using
an adequate nonlinear transfer function a common transfer
function is the sigmoid function expressed by (Tanaka,
2013;Hirose, 2013).

net= ";'I'i'. X -0

Figure 1 An Artificial Neuron Symbols (T.L. Lee, 2002)

Hidden Layer

Input Layer Output Layer

Figure 2 Building of an official Neural Network (T.L. Lee,
2002)

Given a set of input neurons, Xi(l = 1,2,....x), the values are
multiplied by the first set of interconnection weights, (Wyn)in
where (W,)i is the connection weight from the i-th input
neurons to the h-th neurons. The summation of the products,
Xi(Wyp)in,, Can be written as

nety, = % Xj Wyn)ih ~ %hn ®

Where O is the threshold of the h-th hidden neuron.

Each hidden neuron input is then transformed through the

transfer ~ function, such as the sigmoid function
fx)=@1+ e_x)_l, to produce a hidden neuron output, Hy,
1
Hy = f(nety) = ——pgr— ©)
l+e h

Similarly, the output value between the hidden layer and the
output layer are defined by

netj = % Hh Why dnj =% (10)
1
YJ = f(netj) = —_nethf (11)
l+e

In which (W) is the connection weight from the h-th hidden
neuron to the j-th output neuron, 8; the threshold of the neuron
and Y; the value of output layer (T.L. Lee, 2002).

2.4 The General concept of Wavelet transforms Analysis

The wavelet transform decomposes signals over dilated and
translated functions called wavelets(Bentley and McDonnell,
1994; Kumar and Foufoula-Georgiou, 1994; Walnut, 2013)
therefore, the wavelet transforms of a function f(t) with finite
energy is defined as the integral transform with a family of

functions
1 —t
Vit (v :\/;l//[ul ) 12)

Is given as
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WF (A,1) = 20 f (W 4 ¢ (Wdu (13)
A>0
1 u—1
=% f _ d (14)
) (w \E\V( 2 j u

Where A is the scale parameter,
t is a location parameter

and the function
Yiu (u) are called wavelets.

The necessities of dynamical analysis and the involvement of
enormous volume of data to analyze require a technique that
can analyze all variables and all frequencies of the tide signal in
a steady way, nevertheless, tidal analysis methodology based on
continuous wavelet transforms (CWTs) was first proposed by
(Flinchem and Jay 2000) and that is able to provide a
consistent, linear analysis of tidal and non-tidal variance and
reveals features that harmonic analysis is not able to elucidate.

3. THE MAJOR SHORTCOMINGS OF SOME TIDAL
ANALYSIS AND PREDICTION TECHNIQUES

The requirements of dynamical analysis and the volume of data
require that all variables and all frequencies be analysed in a
consistent manner, tidal researcher’s wish to produce forecasts
and hindcasts as well as reconstruct the original data to
ameliorate the accuracy of tidal forecasting since early time.
Harmonic analysis is termed as the classical model for tidal
analysis and prediction, nevertheless, harmonic analysis has its
drawback Harmonic analysis method required 18.6 years’ time
series to resolve all the number of wavelengths of each
constituent in the record. Furthermore, classical methods
assume that, a given time series is generated from an underlying
linear process.

Further problems with the classical harmonic analysis arise in
coastal regions where the tidal response is in the form of a wave
propagating onshore. Therefore, these methods may not always
perform well when applied in modelling hydrological time
series. One month of tidal record is approximately required, but
harmonic constants cannot be accurately required with
harmonic analysis, on the other hand Kalman filtering approach
was introduced for short time water level forecasting (Yen et
al., 1996). However, the Kalman Filter model is only relevant
for short-term prediction, rather than mid-term or long-term
prediction. Furthermore, the short-term tidal prediction of sea
level requires meteorological data. Therefore, different
mathematical techniques were established such as an Atrtificial
Neural Network, Back Propagation Neural Network, Wavelet
transformation and hybridization of various models, to
overcome the lack of aforementioned observations and to search
for an adequate sea level prediction method.

Even though Artificial Neural Network has proven to be a
powerful data-driven, self-adaptive, flexible computational tool
with the capability of capturing nonlinear and complex
underlying characteristics of physical process with a high
degree of accuracy it still has its own drawback and the major
shortcoming of the neural network methodology is its learning
time requirement. Recently Continuous Wavelet Transform
(CWT) have been proven to be another satisfactory tool when
used to extract harmonic constant without inverse transform by

resorting to L1 normalization morlet wavelet transform called
inaction method. Inaction method is only appropriate for the
short-term tidal level predictions.

The advantage of inaction method over other methods, such as
harmonic analysis, fourier transformation is its ability to extract
tidal constituent with an instantaneous amplitude, frequency
and phase directly via time frequency transform. Another
advantage of inaction method is its power to overcome the edge
effect for the multi-component signals and obtain the
instantaneous frequency, amplitude and phase at the current
time. But the major disadvantage of inaction method is it’s in
ability to differentiate tidal constituent with similar frequencies
such as K2 and S2, K1 and P1 when long-term prediction is
involved.

This study reviews some selected theoretical perspectives as
shown in table2 in the field of tidal analysis and prediction with
a view to provide a broad description of existing approaches.
The literature looked into varies tidal analysis modelling
categories such as the classical harmonic analysis, Kalman
filtering, empirical mode decomposition approach (EMD),
normal time frequency transform as it can be seen in Table 2.
However, some of the studies combining two or more types of
models such as harmonic analysis and autoregressive integrated
moving average—support vector regression, Harmonic analysis
with in action method, extreme learning machine and relevance
vector machine, harmonic analysis and wavelet network,
artificial neural network (ANN) with Kalman filters, back
propagation neural network and Cubic B-Spline Curve. But, the
analysis shows that classical harmonic analysis remains the
most predominant modelling techniques utilized in most of the
published work, in spite of the popularity of classical harmonic
analysis in tidal prediction its degree of accuracy in some
studies is still questionable when short data (one month or a few
days) are involved in the analysis and prediction of tide.

The review also revealed that most of the recent tidal analysis
approach focused on how to ameliorate the accuracy of
prediction via short data as a result of high demand to schedule
making on sea surveying such as coastal engineering work, port
engineering work, navigation. The idea of applying short data
was first initiated by Pei, (1996). The modelling approach
shown on the table2 proved effective in the field of tidal
analysis and prediction. However, most of these studies have
common limitations. That is, most of them do not predict for
mid-term or longer term for example, the most recent work by
Song Cai et al., (2018) shows that, his prediction was worse as
lead time increase, the method adopted by Son Cai is only
appropriate for short-term tidal level predictions and this is
common to most of the modelling approaches using short data.
Finally, the predictive powers of the aforementioned models
shown in table2 can be greatly improved if further work is done
for making mid-term and long term-prediction.

4. CONCLUSION AND FUTURE DIRECTION

Tide is the periodic rising and falling of the sea level, and its
fluctuations largely influence human lifestyle. Accurate real-
time recording of tide level information is essential for ship
navigation safety, the development and utilization of marine
resources, and marine disaster mitigation and prevention,
coastal engineering, oil exploration, etc. Therefore, a simple and
efficient tidal prediction method is urgently required. Based on
their underlying prediction principles. This paper has
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systematically reviewed publication trends with the current
state-of-art for tidal analysis and forecasting technique with the
view to identify issues worthy of further investigation, including
aspects that have not yet been completely exploited, future
research work should pay more attention on long time
prediction based on short data since the state of art has sift from
single model to integrated approach to ameliorate the accuracy
of forecasting via short-time data
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