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ABSTRACT:  

 

To acquire 3D geospatial information, LiDAR technology provides the rapid, continuous and cost-effective capability. In this paper, 

two automated approaches for extracting building features from the integrated aerial LiDAR point cloud and digital imaging datasets 

are proposed. The assumption of the two approaches is that the LiDAR data can be used to distinguish between high- and low-rise 

objects while the multispectral dataset can be used to filter out vegetation from the data. Object-based image analysis techniques are 

applied to the extracted building objects. The two automated buildings extraction approaches are tested on a fusion of aerial LiDAR 

point cloud and digital imaging datasets of Istanbul city. The object-based automated technique presents better results compared to 

the threshold-based technique for extraction of building objects in term of visual interpretation.   

 

 

 

1. INTRODUCTION 
 

Many applications such as cadastral mapping, 3D city 

modeling, infrastructure mapping, and urban growth analysis 

require 3D extraction of buildings. Additionally, accurate and 

up-to-date information about the location and dimension of 

building features in an urban environment provides crucial 

input for the fire-safety analysis and managing other hazards 

including 3D flood simulation. Traditionally, from close-

range and satellite images, building boundaries are extracted 

based on manual or semi-automated reconstruction. These 

processes are costly, time-consuming and limited to 2D 

reconstruction of building objects. The lack of automated 

methods can be defined as problems in finding appropriate 

information from the data and the complexity of the scene 

(Elberink, 2008).  Advances in geospatial data acquisition 

techniques have transformed the concept of 2D building 

modeling to 3D. 

 

The automatic reconstruction of urban 3D models has been a 

research area of photogrammetry for the past two decades 

(Haala and Kada, 2010). Digital 3D modeling of complex 

buildings has been a challenge until now with 

photogrammetry technology (Habib et al., 2010) where 

advanced photogrammetric based 3D reconstruction methods 

are fully automated (Musialski et al., 2013). In 3D city 

modeling, there is an increased demand for 3D point cloud 

technologies such as LiDAR (light detection and ranging) 

due to encountered difficulties for interpretation of 

photogrammetric images, especially for complex buildings. 

 

For automated point cloud segmentation, there are three main 

techniques including region growing based techniques 

(Khaloo and Lanttanzi, 2017), model fitting-based techniques 

(Schnabel et al., 2007) and clustering-based techniques 

(Biosca and Lerma, 2008). LiDAR enables 3D modeling of 

the real-world environment by measuring the time of the 

return of an emitted light pulse (Kumar et al., 2013). Laser 

scanning systems use this technology to acquire an accurately 

georeferenced set of highly dense LiDAR point cloud data 

(Kumar, 2012). A high level of automation during data 

acquisition is provided by these systems and they have an 

ability to capture data beneath the tree's canopy. 

 

The applicability of laser scanning systems continues to 

prove their worth in geospatial mapping due to the rapid, 

continuous and cost-effective 3D data acquisition capability 

(Barber et al., 2006). For extracting various features, LiDAR 

data records a number of attributes including elevation, 

intensity, pulse width, multiple returns and range information 

(Kumar et al., 2015). The methods developed for segmenting 

LiDAR data are mostly based on the identification of planar 

surfaces and the classification of point cloud data based on its 

attributes (Vosselman, 2009). 

 

For the past decade, automated extraction of building objects 

has been a topic of intensive research. Several approaches 

have been developed for extracting urban building features 

from LiDAR data over the last decade. For extracting 

building objects from the integration of airborne LiDAR and 

digital imaging datasets, a semi-automated technique was 

developed by Mumtaz et al. (2009). In their approach, the 

Normalized Digital Surface Model (NDSM) was generated 

from LiDAR and a Normalized Differential Vegetation Index 

(NDVI) was developed from the digital image. Both the 

NDSM and NDVI values were thresholded and then 

morphological operations were applied to the binary image 

for extracting building features. However, some of the large 

vehicles and industrial installations were incorrectly 

identified as buildings while smaller buildings were missed in 

their proposed semi-automated method. 

 

A method to extract building features from aerial LiDAR data 

was proposed by Oda et al. (2004) where the Digital Surface 

Model (DSM) was segmented and then Hough transformation 

was applied for extracting building boundaries. Finally, the 

3D building model was created by attaching vertical walls 

from an aerial image to each of the extracted building 

polygons. 
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Pu et al. (2006) developed an approach where LiDAR point 

cloud was segmented based on the planar surface growing 

algorithm and then several human pieces of knowledge have 

driven feature constraints such as size, position, direction, 

and topology were applied to extract building features. 

Mancini et al. (2009) developed an automated urban building 

and road objects extraction method using multi-source aerial 

LiDAR and multispectral dataset. They involved multi-class 

supervised pixel classification using an adaptive boosting 

algorithm to classify buildings, grass, land and tree objects. 

Finally, filtration and Hough transformation techniques were 

applied to extract linear road and roundabout features. 

 

Rutzinger et al. (2009) extracted vertical walls from mobile 

and airborne laser scanning data. To extract planar surfaces 

from point cloud data, a region growing segmentation 

technique based on 3D Hough transform was used and then 

the extracted segments were analyzed based on their 

inclination, size, and dimension. 

 

Based on the literature, most of the methods developed for 

extracting buildings require semi-automated or manual 

intervention. One of the biggest issues in the developed 

methods are associated misclassification of large vehicles, 

trees and other features as building objects. There is a need to 

develop an operational and automated approach for 

extracting building features. The integration of multispectral 

digital images with LiDAR data will provide a more efficient 

and accurate extraction of buildings. The use of LiDAR data 

provides to distinguish between high- and low-rise objects 

while multispectral data helps to distinguish vegetations from 

the building objects.  

 

In this paper, two automated techniques for extraction of 

building objects from the integration of aerial LiDAR and 

multispectral digital imaging datasets are developed. 

Following this Section, in Section 2, the two object-based 

image analysis technique based on aerial LiDAR and 

multispectral digital imaging dataset methodologies to extract 

buildings is presented. Results of the proposed automated 

techniques are discussed in Section 3. Finally, the accuracy 

of the results of both proposed techniques is compared and 

discussed in Section 4.  

 

 

2. METHODOLOGY 

 

2.1 the Threshold-based automated technique 

 

Both automated building extraction approaches are tested on 

aerial LiDAR and multispectral image datasets of Istanbul 

city which were acquired in October 2012. The multispectral 

image consisted of three bands including red, blue and green 

with a ground sampling distance of 0.1 m and 8-bit 

radiometric resolution. The point cloud was associated with 

elevation, intensity, and multiple return attributes. Two 

proposed methodologies are based on the integration of aerial 

LiDAR and digital imaging dataset to extract buildings. A 

workflow of the first automated building extraction approach 

is shown in Figure 1.  

 

To remove vegetations from the data, digital imaging dataset 

is used. The available multispectral digital image consisted of 

blue, green and red bands which represent brightness 

information of the targets. A low reflectance property of the 

vegetation in the red band is utilized to suppress them in the 

data. In the first method, an empirically estimated T1 

threshold value to the red band image is used in order to 

remove the vegetation area.  

 
Figure 1. The threshold-based automated buildings extraction 

approach. 

 

LiDAR data provides multiple return information which 

refers to multiple returns of return pulses from the targets. 

Multiple reflected points are filtered out and those points that 

record a single reflection are retained. These single return 

reflection points belong to buildings, roads, and other solid 

objects. The filtered points are used to generate Digital 

Surface Model (DSM) using the maximum elevation value of 

points within the cell while natural neighborhood 

interpolation method is used to estimate values for cells that 

do not have points within their extent.  

 

The thresholded red band image is used to remove vegetation 

area from the DSM. An empirically estimated T2 threshold 

value to the DSM is utilized in order to remove ground-level 

objects such as roads, parking areas, etc. and retain high rise 

building features in the data. In order to complete the 

extracted buildings and remove noise that is introduced 

through the use of thresholding, the binary morphological 

operation is used. The thresholded DSM is converted into a 

binary image and is processed using morphological 

operations. The morphological opening operation is applied 

in which the binary image is eroded followed by their dilation 

while the morphological closing operation is applied by 

dilating the binary image followed by their erosion. In the 

dilation operation, a binary matrix element is used to dilate 

the image pixels and in the erosion operation, a binary matrix 

element is used to erode the image pixels (Kumar et al., 

2014). 

 

Thus, the morphological operations applied to the binary 

image are able to extract inherent shapes of the building 

objects and to remove noise. Finally, the contour boundary of 

each building object is identified and then LiDAR points 

inside each boundary are estimated to provide 3D generation 

of extracted building objects. The empirically estimated T1 = 
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130 threshold value was applied to red band image in order to 

remove vegetation. The DSM was generated from the 

maximum elevation value of filtered points with 0.1 m cell 

size. The empirically estimated T2 = 45 threshold value to 

the DSM is used. The morphological opening and closing 

operations were applied using a 3x3 matrix element. 

 

2.2 The Object-based automated technique 

 

In this Section, a rule-based object-oriented image analysis 

technique in eCognition Developer is developed to extract 3D 

building objects as follow (see Figures 2 and 3):  

 

In this experiment, A bigger data set with more vegetation 

regions compared to the first experiment is used (see Figure 

2a). To calculate the relative elevation which is a subtract of 

DSM and Digital Elevation Model (DEM), from aerial 

LiDAR, DSM and DEM are generated. A multi-resolution 

segmentation algorithm is used to segment the study area 

where red, blue and green bands have the weight of one and 

the relative elevation has a weight of 10. In the segmentation, 

for the composition of homogeneity criterion, for shape and 

compactness, the value of 0.3 is selected. The multiresolution 

segmentation basically minimizes the average heterogeneity 

of image objects using an iterative algorithm, where objects 

are grouped until the upper object variance as a threshold is 

reached.  

 

The variance threshold (scale parameter) is weighted with 

shape and compactness parameters to minimize the fractal 

borders of the objects. For vegetation extraction several 

indices including Red-Green-Blue Vegetation Index 

(RGBVI, Bendig et al., 2015), Green Leaf Index (GLI, 

Louhaichi et al., 2001), Visible Atmospherically Resistant 

Index (VARI, Gitelson et al., 2002), and Normalized Green 

Red Difference Index (NGRDI, Tucker, 1979) were tested 

where none of them showed good results. In this study, The 

Normalized Green Blue Difference Index (NGBDI, see 

Equation 1 and Figure 2b) is used to extract vegetation areas 

which show pretty good results compared to the mentioned 

indices. 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                               (a) 

 
                                               (b) 

 

Figure 2. (a) Input multispectral image and automated 

extracted (b) Vegetation based on NGBDI. 

 

For vegetation extraction, mean red band with an empirical 

value of less than 150, the number of returns from LiDAR 

data with an empirical value of 0.6 and NGBDI with an 

empirical value of greater than 0.17 is combined. From the 

relative elevation, unclassified areas with an elevation of 

fewer than 3 meters are considered as ground areas where 

building objects are classified from regions with an elevation 

of greater than 3 meters.
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Figure 3. The object-based automated buildings extraction approach.

 

3. RESULTS 
 

3.1 Results of the threshold-based technique 

 

The tested multispectral image is shown in Figure 4(a) while 

the automated extracted 2D and 3D building objects are 

shown in Figures 4(b) and 5 respectively. 

 
Figure 4. (a) Input multispectral image and automated 

extracted (b) 2D building objects. 

 
Figure 5. The Automated extracted 3D building objects. 

 

Some of the building objects along the lower-left side of the 

data were missed while some of the roads were extracted 

along the middle-right side of the data as false positive as 

seen in Figure 2(b). Red band in the multispectral image is 

utilized to remove canopies from the data however, this 

information was not adequate. The opening and closing 

morphological operations were applied to complete the 

shapes of extracted buildings and remove noise. There is a 

need for their inclusive use in which the dimensions of the 

extracted objects can be used to remove non-building objects. 

 

3.2 Results of the object-based technique 

 

Results of automated building extraction using the object-

based technique is presented in Figures 6 and 7. 

  

 
Figure 6. Buildings (yellow), vegetation (green) and ground 

area (white) classification based on the OBIA technique. 
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Figure 7. The automated extracted 3D building objects using 

OBIA technique. 

 

As seen in Figures 6 and 7, although some of the building 

objects with low elevations are wrongly classified as 

vegetation areas, results of object-based image analysis 

technique show good results for building objects 

identification. In the second automated approach, there are 

less noise and roads are classified better compared to the first 

automated approach. In this study, separation of vegetation 

objects including trees were the biggest issue due to the lack 

of NIR band. In the second approach, the number of returns 

raster generated from LiDAR data and NGBDI facilitates 

better vegetation identification. 

 

 

4. CONCLUSIONS 

 

Two automated approaches were able to successfully extract 

the building objects from aerial multispectral digital imaging 

and LiDAR point cloud datasets. The use of both the near 

infra-red and red bands would provide us to estimate 

Normalized Differential Vegetation Index (NDVI) which 

would be more efficient in removing vegetation areas from 

the data. The use of multiple return attribute in the LiDAR 

data was further helpful in retaining the points that belong to 

buildings, roads, and other solid objects.  

 

LiDAR data provides intensity attribute that represents the 

maximum amplitude of a reflected pulse. Intensity values can 

be used to differentiate buildings from other terrain objects. 

The minimum elevation value of points within the cell can be 

used to generate a Digital Terrain Model (DTM) which can 

be further used to estimate the Normalized Differential 

Surface Model (NDSM). NDSM values can be more 

efficiently used to remove ground-level objects and retain 

building objects as they represent absolute height values of 

the terrain objects. This research study presents results for 

extracting building objects from the integrated aerial LiDAR 

point cloud and digital imaging datasets where NGBDI is 

used for vegetation extraction for RGB images. 
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