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ABSTRACT: 

 

Floods are the natural hazards that produce the highest number of casualties and material damage in the Western Mediterranean, 

especially in Morocco. An improvement in flood risk assessment and study of a possible increase in flooding occurrence are 

therefore needed. Earth Observation big data such as the ones acquired by the Copernicus programme are providing unprecedented 

opportunities to detect changes and assess economic impacts in case of disasters. This article present the different results obtained by 

the multi-temporal methods using the Synthetic Aperture Radar images. The spaceborne Synthetic Aperture Radar (SAR) systems 

are suitable tools for flood mapping thanks to their daytime and nighttime and almost all-weather imaging capability, in addition to 

their sensitivity to surface roughness and to Flood monitoring. The method has been developed to exploit Sentinel-1 data. It has been 

tested for the 2018 flood of Tetouan (Morocco).  
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1. INTRODUCTION 

Floods are one of the most common natural disasters occurring 

in many parts of the world every year, it’s becoming an 

international issue. They have been a recurrent phenomenon in 

Morocco and cause huge losses to lives, properties, livelihood 

systems, infrastructure and public utilities. Flood damage tends 

to increase over time due to socio-economic development, 

population density, development, and the effect of climate 

change. An improvement in flood risk assessment and study of a 

possible increase in flooding occurrence are therefore needed to 

disaster monitoring and EA Data exploitation. 

 

Earth observation (EO) technology has provided highly useful 

information in flood management over the past few decades. In 

2012, the International Data Corporation (IDC) released the 

2020 Digital Universe report (Gantz and Reinsel, 2012), which 

stated that the total amount of data available will double every 

two years. Increasingly, there is a drive to observe the Earth in 

multi-scale, comprehensive, and real-time perspectives, and the 

capability of accessing global Earth observations information 

has been rapidly enhanced (Hua-Dong et al., 2015). The big EO 

data of ESA's Copernicus programme is helping to move 

towards an improved flood risk assessment for both emergency 

management  (EM) and better infrastructure planning (Twele et 

al., 2016). Remote sensing data from synthetic aperture radar 

(SAR) sensors can be an efficient means of monitoring flood 

extent in large wetlands, as traditional in situ techniques are 

limited by access, cost, and logistics (Arnesen, A.S et al 2013). 

The main advantages of SAR data are its relative independence 

of atmospheric and illumination conditions, and the capability 

of mapping inundation under vegetated areas (Woodhouse, 

2006). Sentinel-1 (S1), a constellation of two radar satellites 

operational since October 2014, can monitor the entire Earth 

every 6 days, giving an unprecedented opportunity to access a 

large number of archived scenes (Potin et al., 2015; Torres et 

al., 2012). 

 

Numerous research studies have shown the contribution of 

remote sensing data from synthetic aperture radar (SAR) for the 

mapping of flood zones at different methodologies such as 

unsupervised classification, active contour models, CD and 

thresholding (Martinis et al., 2011; Horritt et al., 2001; Li et al., 

2014; Hostache et al., 2012; Martinez and Le Toan, 2007; 

Pulvirenti et al., 2011; Pierdicca et al., 2013; Pulvirenti et al., 

2013; Arnesen et al., 2013). We propose a  methodology 

modified (Cian et al., 2018), it is based on the use of the 

Normalized Different Flood Index (NDFI). The index is based 

on the multi-temporal statistical analysis of two sets of images, 

one containing only the images before the event, and another 

one containing images both of the event and before the event. 

Through the computation of the NDFI, a change detection is 

performed, and flood maps are derived. The index highlights 

flooded areas and allows to easily separate flooded pixels by 

non-flooded ones by means of a constant threshold. 

 

The objective of this work is to present a semi-automatic, fast 

and reliable method to manage flood in support of economic 

impact assessment methods for a rapid estimation of losses (and 

precise in case of high-resolution elevation data available). 

 

 

2. PROBLEM FORMULATION 

SAR-based techniques for flood detection include histogram 

thresholding or clustering (Inglada and Mercier 2007, Martinis 

et al 2009). While most methods use a single image to process 

the flood event, change detection can be used to provide 

reference brightness information (Inglada and Mercier 2007, 

Huang et al 2011, Gan et al 2012) and works well in 

coordination with other techniques such as histogram 

thresholding and segmentation. This methods (image 

thresholding) sets as flooded all the pixels with a radar 

backscatter lower than a certain threshold value (Mason et al., 
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2012a, 2012b; Pulvirenti et al., 2012; Schumann et al., 2010; 

Townsend, 2002), is computationally not demanding, provides 

reliable results and is ideal for rapid mapping. However, it is 

affected by sources of error typical of SAR flood mapping:  

1) Atmospheric disturbances (Atlas and Moore, 1987; 

Danklmayer and Chandra, 2009a, 2009b; Jameson et al., 

1997; Polverari et al., 2014);  

2) Bragg resonance in presence of wind (Bragg, 1913; 

Schaber et al., 1997);  

3)  Double bounce due to emerging vegetation or buildings 

from the inundated area (Franceschetti et al., 2002; 

Hong and Wdowinski, 2014; van Zyl et al., 1987; 

Hajnsek et al., 2009);  

4)  Dry and smooth bare soil exhibiting backscatter similar 

to that of water surfaces (O'Grady et al., 2011);  

5)  Vegetation masking part of the flood;  

6)  Soil moisture content increasing radar backscattering 

and limiting flood detection in mixed pixel (Jackson et 

al., 1996; Paloscia et al., 2013; Quesney et al., 2000; 

Shoshany et al., 2000; Wagner et al., 1999); and  

7)  User-dependence of the parameters chosen to produce 

the map (Martinis et al., 2009).  

 

CD techniques are interesting because they can overcome part 

of these limitations and can substantially improve the accuracy 

of flood maps (Matgen et al., 2011). In CD techniques, the 

selection of a suitable reference image is crucial (Hostache et 

al., 2012) to detect changes in radar backscattering due to 

floods (Liu et al., 2004; Lu et al., 2004) and avoid the risk of 

under estimating the extent of the event (Singh, 1989; Lunetta 

et al., 2004; Ulaby and Dobson, 1989). By selecting reference 

images sensed with the same acquisition geometry of the flood 

image, it is possible to discriminate areas of low backscattering 

from flooded ones (Giustarini et al., 2013). However, for 

practical reasons the first non-flood image found in the archive 

is usually employed as reference (Jones et al., 2009). Now, 

thanks to EO big data we have the possibility of statistically 

analyzing long image time-series and easily identify a more 

robust reference. 

 

 

3. METHODOLOGY 

We developed a method for flood mapping characterized by a 

novel approach to CD; in particular, it is based on multi-

temporal series analysis and the computation of two new 

indices, i.e. the Normalized Difference Flood Index (NDFI) for 

highlighting flooded areas, and the Normalized Difference 

Flood in short Vegetation Index (NDFVI) for highlighting 

shallow water in short vegetation. 

 

This paper, therefore, has two objectives: 

1. Easy threshold selection through the use of 

normalized indices;  

2. and Capability of outlining shallow water in short 

vegetation in addition to open-land flooded areas  

using Snap logiciel;  

 

We first present the implemented technique, which consists in 

the computation of the abovementioned NDFI and NDFVI, 

followed by thresholding and post-classification. Then, we 

present two another classification methods to validate our 

methodology. 

 

As summarized in Fig. 1, two SAR multi-temporal series are 

created: one containing only reference images and one 

containing also images of the flood under investigation. The 

two stacks are first radiometrically calibrated and terrain 

corrected. Statistical analysis of the backscattering σ0 of each 

pixel is then performed throughout the whole multi-temporal 

series. For each pixel, we calculate the minimum, maximum and 

mean, for both the stack of reference images and the one also 

including the flood scenes Fig 3 and Fig 4. 

 

The maps obtained after the thresholding are then filtered 

following the scheme in Fig. 1 to reduce two sources of errors. 

Firstly, to reduce the effect of speckle. Secondly, all clusters 

smaller than 10 pixels are excluded to reduce spurious flooded 

areas. The same post-processing steps are applied to all the 

different datasets used in this analysis. 

 

 
Figure 1. The methodology proposed consists in creating two 

stacks of images: one containing only reference images and one 

containing also images of the flood under investigation. The 

two stacks are then radiometrically calibrated and terrain 

corrected. Temporal statistics are extracted to compute the 

Normalized Difference Flood Index (to highlight temporary 

open water bodies) and the Normalized Difference Flood in 

Vegetated areas Index (to highlight shallow water in short 

vegetation). A threshold is finally applied to the indices values 

to extract only flooded areas. Additional filtering is applied to 

remove spurious cluster of pixels 

 

 

4. CASE STUDY 

The watershed of Oued Martil belongs to the Rifain domain. It 

is limited to the North by strings overlooking the Strait from 

Gibraltar, to the West by the plains of Gharb, to the south by the 

Rif high and to the East by the Mediterranean sea, It is located 

geographically between the two parallels 35.2 ° and 35.8 ° N, 

and the two meridians 5.6 ° and 5.8 ° W (Fig. 1). 

 

The Martil Basin is one of the Mediterranean basins that is 

characterized by a relatively large area and varied morphology. 

Its surface is of 1126 km² corresponding to a perimeter of 183 

km. The basin, depending on the stations existing, is subdivided 

into 8 major sub-watersheds. 

 

The altitudes and slopes of the Martil basin are very variable 

because of the position between the Rif chain and the sea 

Mediterranean. Indeed, the altitudes vary between 0 m on the 

coast and the plain at 1782 m at the extreme south of the sub 

basin of Kebir and the average altitude is of the order of 424 m. 

Geologically, the litho-stratigraphic characters of the Rif chain 

are well represented. It is indicated by the overlap of several 

thrust sheets (flyschs) forming the ridge line above the marly 

unit of Tangier. The watershed of Martil, object of this study, is 

composed of two zones: 
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The upstream zone formed by Paleozoic lands located at the 

eastern end of the watershed and whose peaks do not exceed 

not the 400 meters above sea level. This zone also includes the 

flysch hills located at the western end of the basin slope and 

which correspond to the low mountains of the unit of Tangier 

whose impermeable material is of nature marly or marno-

schisteuse. 

 

The downstream zone of the basin corresponds to the plain of 

Oued Martil; it is a flood zone. The lithological variety of the 

watershed of Martil allowed the development of a rather large 

soil mosaic formed by soils little evolved hydromorphic and 

lithosols. 

 

 
Figure 2. Location of Martil Basin 

 

 

5. RESULT DISCUSSION 

The new method we proposed aim at exploiting new big EO 

data. It is especially designed for using S1 data. A statistical 

analysis on a large amount of reference images gives more 

precise information about prevent conditions and allows a much 

more robust and precise detection of changes when a flood 

occurs. This was shown in our case studied presented, in 

particular for Morocco where S1 data were used.  

 

We have two flood maps were produced for this flood event at 

different resolutions, precisions and coverage. The results are 

shown in Fig. 2, 3 and 4. The first image shows the S 1 images 

derived for the area of Tetouan on Febrery 20 and on March, 5 

using S 1 (Fig. 2). From these images we can appreciate 

the evolution of the event and the different resolution of the 

products. 

 

The results show a very good agreement (blue), the areas 

declared flooded only by the proposed method (light blue). 

Figure 7 confirms that there is an overflow but also shows how 

the proposed methods signal a wider flooded area. This is 

partially explained by the analysis of Fig.6, which shows a 

reference image for comparison with flooded image. 

 

 
Figure 3. Results of using S1 SAR data. Two stacks are 

radiometrically calibrated. 

 

 
Figure 4. Results of using S1 SAR data. Two stacks are 

corrected geometrically. 

 

 
Figure 5. Results of the cross-comparison using S1 SAR. 
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Figure 6. Results of using S 1 SAR data. 

 

 
Figure 7. Results of Flooding are using S1 SAR data. 

 

 

6. CONCLUSION 

In this study, we presented a methodology for flood mapping 

based on free satellite data. In particular, we used data from 

Sentinel-1 and processed it with open-source software based-

methods easily carrying out also by non-remote sensing expert 

community. We tested our methodology over an areas recently 

hit by flood, the Tetouan city, North of Morocco, flooded in 

Mars 5, 2018. 

 

This method based on time-series statistical analysis is proposed 

for flood mapping with the aim of exploiting the big EO data 

coming from the new Sentinel 1 constellation. Two indices are 

proposed for mapping flooded areas: the Normalized Difference 

Flood Index (NDFI), for mapping open water and the 

Normalized Difference Flood in Vegetation Index (NDFVI) for 

mapping shallow water in short vegetation. 

 

Nevertheless there are still some limitations. The use of old 

SAR data prior to 2018, which usually are sparse and acquired 

with different geometries, showed to be more complicated and 

required more filtering steps even though precise results were 

obtained. In urban areas we could not obtain good results. The 

resolution of S1 did not allow for detecting changes using only 

radar intensity and at the moment of this analysis no Single 

Look Complex data were available on the areas considered in 

this paper and it remains a possibility for further 

 

 

ABBREVIATIONS 

CD  Change Detection 

EO  Earth Observation 

SAR Synthetic Aperture Radar 

S1 Sentinel 1 

NDFVI Normalized Difference Flood in Vegetation 

 Index 

NDFI Normalized Difference Flood Index 
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