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ABSTRACT: 

 

An area that located in Kundasang which in Ranau district in Sabah, Malaysia that lies along the bank of Kundasang valley was 

chosen for comparing the reliability of frequency ratio (FR) and weight of evidence (WoE) methods for landslide activity probability 

mapping by using related vegetation anomalies indicator. The locations of 47 and 189 of active and dormant landslides respectively 

were identified using 4 raster layers (topographic openness, hillshade, colour composite and high resolution orthophoto). Each 

landslide activites were randomly divided into two groups as training (70%) and testing (30%) datasets. Tree height irregularities, 

DVI, NDVI, SAVI, and OSAVI were considered as landslide bio-indicator. The landslide activity probability maps were prepared 

using the FR and WoE method. The generated maps were validated by calculating the success and prediction rates from area under 

receiver operating characteristics (ROC) curve. The results of WoE method were relatively reliable (AUC > 0.8) for dormant 

landslide while only about 40% of active landslide have been predicted accurately. Similar trend yielded for FR method where least 

accuracy for active landslide prediction. 
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1. INTRODUCTION 

Landslide is major problem that required attention. Landslide is 

rapid movement downward cause by collapse of a mass of rock 

or earth from mountain or cliff. It can be triggered by natural 

activity i.e. earthquake, heavy rainfall or human intervention 

such as deforestation. Snowmelt or heavy rainfall may affect the 

structure and mechanical stability of the ground and human 

activity such as mining and deforestation may cause landslide 

by making the soil vulnerable to oversaturation and erosion. 

Generally, landslides are predict to happen in the future under 

the same conditions (Guzzetti et al., 1999; Lepore et al., 2012; 

Skilodimou et al., 2018). Therefore, landslide inventory map 

considered as one of the most important elements for landslide 

studies.  

 

In general, a landslide inventory map provides basic 

information such as location of mass movements and the date of 

occurrences (Hansen, 1984; McCalpin, 1984; Guzzetti et al., 

2012). Landslide inventory can be used for multiple purpose 

such as (1) recording the magnitude of landslide in a region, (2) 

performing the initial steps in analyzing the susceptibility, 

hazard, and risk of the landslide, and (3) examining the patterns 

of landslide distributions and studying the evolution of 

landscape affected by landslides (Rosi et al., 2018). It also 

contains a collection of polygon shapes, types, lengths, widths, 

areas, locations, and other information related to landslides 

(Pirasteh & Li, 2018). This map provides spatial and temporal 

distribution of landslide patterns, type of movement, type of 

displaced material (earth, debris or rock), rate of movement etc.  

 

With such valuable information, landslide inventory data can be 

integrated in GIS environment (Martha et al., 2010; Lyons et 

al., 2014). This implementation enables us to increase the level 

of understanding of landslide phenomena across regions and 

through space and time (Wood et al., 2015). Moreover, 

landslide inventory map represented as fundamental element in 

a framework for accessing landslide susceptibility, hazard, and 

risk (Pellicani & Spilotro, 2015). 

 

However, one of the challenges of producing landslide 

inventory map is due to the rapid vegetation growth especially 

in tropical region such as Malaysia. Conventional methods have 

constrained due to low coverage which require aerial 

photograph, the availability of geomorphologists experienced in 

recognition of landslides from aerial images and in the field, 

and the time and resources needed to complete the inventory 

(Guzzetti et al., 2012). In addition, field survey method is time 

consuming and resource intensive procedure (Guzzetti et al., 

1999; Haneberg, Cole, & Kasali, 2009; Pawluszek, Borkowski, 

& Tarolli, 2017). Recently, new methods and technologies have 

been exploited by researchers in detect and map the landslides 

(Guzzetti et al., 2012). One of the technologies used is airborne 

LiDAR (Light Detection and Ranging).  

 

The ability of high density airborne LiDAR data to penetrate the 

vegetation in providing the topographic surface is significant to 

detect and map the landslide under forested area (Haugerud et 

al., 2003; Van Eeckhaut, M., et al., 2007; Booth et al., 2009; 

Bibi et al., 2017). LiDAR derivative products such as contour 

maps, shaded relief, slope, curvature etc. can be further used in 

landslide detection and mapping (Guzzetti et al., 2012; 
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Jaboyedoff et al., 2012; Bibi et al., 2017). Nevertheless, the 

main limitations of this technique are the cost of data 

acquisition (Joyce et al., 2014; Gaidzik et al., 2017) and time 

consuming for data processing especially for large areas. As a 

result, most of the studies generally covered small area (less 

than 20 km2) (Guzzetti et al., 2012). 

 

Landslide activity analysis is a crucial aspect of landslide 

inventory mapping and it is even more challenging in forested 

rugged terrain. Conventionally, an interpreter can recognize 

landslide type and activity based on several diagnostic features 

such as morphology. For instance, active slides are commonly 

fresh; that is, their morphological features, such as scarps and 

ridges, are easily recognizable as being due to gravitational 

movement, and they have not been significantly modified by 

surficial processes of weathering and erosion (Varnes, 1978). 

Remote sensing technologies such as synthetic aperture radar 

(SAR) sensors primarily to measure surface deformations, and 

to construct time series of surface deformations, at single points 

(Berardino et al., 2002; Hooper et al., 2007; Cigna et al., 2011; 

Jaboyedoff et al., 2012; Bianchini et al., 2017;).  

 

However, this method is an active sensor and the data 

acquisition depend on various factor such as natural 

illumination, foreshortening, layover effects, atmosphere 

propagation effects, and vegetation decorrelation in forested 

terrain (Rott, 2009; Scaioni, Longoni, Melillo, & Papini, 2014). 

Besides that, the techniques of geomatics also widely used for 

landslide activity analysis (Artese & Perrelli, 2018).  

 

In Malaysia, landslide analysis tends to have frequent site visit, 

and real-time monitoring of the deformation that can cause lots 

of budget to be put on, and potential hazard to property and life 

once the landslide struck. Expensive instrument such as total 

station (the integration of a theodolite and an electronic distance 

meter (EDM)) was installed in landslide area for monitoring 

purpose (Stiros et al., 2004; Tsai et al., 2012; Afeni & Cawood, 

2013; Castagnetti et al., 2013; Corsini et al., 2013; Simeoni et 

al., 2015). However, this method is high risk especially for 

active fault areas which will damage the instruments. For this 

reason, the implementation of vegetation anomalies as one of 

the landslide activity indicators can lead as an effective 

approach. Landsliding may damage trees and produce silent 

witnesses. Trees as silent witnesses may be displaced, tilted, 

partially buried, bended, or limited in growth by landslides. 

 

Using this study, problems arising from implementing 

conventional and other recent methods can be kept to a 

minimum, as utilizing remote sensing technology enables the 

researcher to obtain vegetation anomalies as a bio-indicator of 

landslide activity mapping and analysis. In addition, this studies 

also capable in defining the method to produce vegetation 

anomalies from remote sensing data and analyze the 

performance of geospatial-based approach. A vegetation 

anomaly characteristics library can be developed as a guideline 

to landslide activity monitoring and mapping in Malaysia, and 

Kundasang in particular. This is because, despite its use as one 

of the slopes strengthening methods, it can be used as a bio-

indicator of defining landslides in different type, depth and 

activity. 

  

2. STUDY AREA 

2.1 Description of Study Area 

The study area is is located at Kundasang, Sabah, Malaysia 

(5°59'0.69"N, 116°34'43.50"E), in the Northern part of Sabah. 

Kundasang is a town in Ranau district that lies along the bank 

of Kundasang Valley. It is the closest town to Mount Kinabalu 

and has a panoramic view of the Mountain. With an elevation of 

almost 1,900m (6,200ft), it is the highest settlement in 

Malaysia. 

 
Figure 1. Location of study area at Mesilau River in Kundasang 

region which was struck by debris flow in June 2015 

 

The area is in a typical tropical climate, large amount of rainfall 

throughout the year. The annual rainfall ranges from 1920 mm 

to 3190 mm (average 2075 mm) (Tating et al., 2013). 

Kundasang area consists of three (3) types of lithology; 

Pinasouk gravel, Trusmadi formation and Crocker formation. 

On 5 June, an earthquake measuring 6.0 Mw occurred in Sabah 

that had triggered the debris flow which caused the disruption 

of roads, houses and the vegetation along the channel. It is said 

that the earthquake was caused by movement on a Soutwest-

Northeast (SW-NE) trending normal fault and the epicenter was 

near Mount Kinabalu.  

 

The shaking caused massive landslides around the mountain 

(Tongkul, 2015). Rocks located beneath Kundasang vary in age 

and type, which are the rock starting from Paleocene-Eocene 

rocks to alluvial rock. Three formations are present and include 

Trusmadi Formation, Crocker Formation and Quaternary 

sediment (Tongkul, 1987). Mensaban fault zone is located on 

the eastern side of Kundasang area which intersects with 

Crocker fault. The mass movements in Kundasang area can be 

the result of active movement in Crocker and Mensaban fault 

zones. 

 

 

3. METHODOLOGY 

In general, the implemented methodology in this study contain 

five (5) main stages. The first stage concentrates on the data 

collection, which consists of field and remotely sensed data 

collection. The second stage emphasizes on the data pre-

processing while the third phase focuses on delineating and 

characterizing landslides using remotely sensed data and field-

based approach. In the fourth phase, the remotely sensed data 

was used to derive several vegetation anomalies indicators. The 

final phase focuses on generating the landslides activity maps 

that account different scenarios of landslide activity. These 

landslide activity maps were evaluated based on the area under 

receiver operating characteristics (ROC) curve. 
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3.1 Data Collection 

There are two types of data required to employ this study i.e. 

primary data and secondary data. Primary data includes field 

observation for selected landslide area with its vegetation 

characteristics. Meanwhile, secondary data consists of airborne 

LiDAR data collection, satelite imageries, aerial photograph, 

etc. Airborne LiDAR is an active sensor that will be used in this 

study. The scanning system known as Integrated Geospatial 

Innovations (IGI) Lite Mapper 6800-400 was mounted onto a 

helicopter, captured multiple returns of laser pulse of the terrain 

over debris flow along Mesilau River channel.  

 

This data was captured in August 2015, approximately two 

months after the debris flow that hit the Mesilau River. This 

system combined the Laser Scanner 6800-400, IMU-Ilf Inertial 

Measurement Unit, Trimble R7 GPS Receiver, DigiCAM H60, 

DigiCAM Lens Cone HC 3,5/50-11, Clear-Protection-Filter, 

77mm, LiteMapper system mount, LiteMapper Data Recorder 

680 and AEROcontrol Sensor Management Unit. 

 

The point cloud data were generated from a RIEGL LMS-Q680i 

airborne laser scanner (ALS), a long-range airborne laser 

scanner with full waveform analysis. RIEGL LMS-Q680i 

scanner provides scan data acquisition with 20mm accuracy or 

20mm precision, maximum range of 3000m and measurement 

up to 266,000 pulses per second on the ground, thus, producing 

a very high-density point cloud data (RIEGL® 2012). Average 

point density per meter square (m2) in this study area is 160 

points. 

 

The satellite image used in this study is Pleiades. This satellite 

system is one of the recent satellite missions launched by 

French-Italian ORFEO system (Optical and Radar Federated 

Earth Observation). It is managed by Centre National d’Etudes 

Spatiales (CNES) and ASTRIUM Geo-Information Services 

(Gleyzes et al., 2012). Pleiades satellite system allows two 

satellite for a one-day revisit time worldwide. By comparing 

with other satellite system such as GeoEye-1 and WordView-2, 

Pleiades can provide wide coverage (a total of 1 million square 

kilometres daily) and similar spatial resolution (Poli et al., 

2013). In term of satellite imageries properties, it consists of 

four spectral bands (blue, green, red, and NIR) as the 

planimetric accuracy approximately 3 meters without ground 

control points.  

 

3.2 Data Pre-processing 

Data pre-processing include correction and calibration of the 

airborne LiDAR data and satellite imageries. Filtering process 

also known as point cloud classification focus on the separation 

of point cloud into ground and non-ground returns (Q. Chen, 

2007). Filtered point cloud is highly valuable for deriving the 

height of tree, building and other land features. The filtering 

process was carried out using Adaptive TIN Densification 

algorithm embedded in the Terrascan software. The ground 

points were interpolated to generate Digital Terrain Model 

(DTM). Digital Surface Model (DSM) was generated by taking 

the highest points within 25 cm moving window over the entire 

dataset. DTM was then substracted from DSM in order to 

produce Canopy Height Model (CHM) with 25 cm of spatial 

resolution. 

 

3.3 Landslide Inventory 

Landslide inventory provides basic information such as location 

of mass movements and the date of occurrences. Preparation of 

landslide inventory map is an imperative procedure of landslide 

study. LiDAR-derived raster layer that have been produced was 

then further applied for landslide interpretation. These raster 

layers were overlaid together with high resolution of aerial 

photograph. The delineation and characterization process of 

landslide was conducted by analyzing the terrain surface. 

Usually, a landslide area was characterized by hummocky 

surface, extreme curvature and concavity, sudden steep slope of 

the planar surface and clear color contrast of aerial photograph. 

A series of landslide validation were done to ensure the 

certainty level of the delineated landslide. This validation 

processes were done by visiting the landslide area and based on 

expert-knowledge. 

 

3.4 Estimation of Vegetation Anomalies  

Overall, five vegetation anomalies were derived as an indicator 

for landslide activity mapping. Airborne LiDAR and satellite 

imageries used to generate all the indicators such as Normalized 

Difference Vegetation Index (NDVI), Difference Vegetation 

Index (DVI), Soil Adjusted Vegetation Index (SAVI), 

Optimized Soil Adjusted Vegetation Index (OSAVI), and tree 

height irregularities.  

 

3.5 Generation of Landslide Activity Probability Map 

In this study, WoE and FR methods were applied to generate 

landslide activity probability map of the study area. The 

production of this map be carried out in a GIS-based system.  

 

3.5.1 Frequency Ratio Method: The FR approach is a 

bivariate statistical method that is simple to implement (Lee & 

Pradhan, 2007; Park et al., 2013). It is consider as quantitative 

technique by applying spatial data and GIS technique (Chen et 

al., 2016; Ding et al., 2017). The FR value is quantified by 

establish the combination between indicator and landslide 

inventory map (Reis et al., 2012) using Equation (1) (Mondal & 

Maiti, 2013). 

 

 
 

Npix(1) = The number of pixels containing landslide in a class 

Npix(2) = Total number of pixels of each class in the whole 

area 
∑ Npix(3) = Total number of pixels containing landslide 

∑ Npix(4) = Total number of pixels in the study area 
 

The summation of FR value then used to develop landslide 

activity map (LAM) using Equation (2). 

 

 
 

where Fr is the frequency ratio, and n is the number of selected 

indicators. 

 

3.5.2 Weight of Evidence (WoE): WoE method was 

originally developed by  Bonham-Carter et al. (1988) for 

mineral potential assessment. This method is a probabilistic 

approach based on a log linear form of Bayes’ rule as expressed 

in Equation (3) 
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This method calculates the weight for each landslide predictive 

factor (B) based on the presence or absence of the landslide (A) 

within the area 

 

 

 
 

where P is the probability and ln is natural log, B is the 

presence of desired class of landslide causative factor, Ḇ is the 

absence of desired class of landslide causative factor, A is the 

presence and Ā is the absence of the landslides. The magnitude 

of positive weight (Wi+) is an indicator for the positive 

correlation between the presence of a desired class of the 

causative factor and the landslides. On the other hand, the 

negative weight (Wi-) indicates the absence of a desired class of 

the causative factor and shows the level of negative correlation. 

Table 1 and Table 2 show the spatial relationship between each 

indicator and the landslides for active and dormant landslide 

activity. 

 

 

Table 1. Spatial relationship between each indicator and the landslides for the FR and WoE (active landslide) 

 

Factor Class Pixels in Domain Landslide Pixel Frequency Ratio W+ W- Wf 

DVI -1951 - 502.996 5753762 26043 2.946 -0.740 0.056 -0.684 

 

502.996 - 908.243 10065677 26051 1.687 -0.364 0.061 -0.303 

 

908.243 - 1290.976 15134013 27086 1.168 -0.111 0.036 -0.076 

 

1290.976 - 1651.196 17285810 8123 0.307 0.187 -0.088 0.099 

 

1651.196 - 3790 10905079 3311 0.198 0.328 -0.091 0.237 

 
       

NDVI -1 - 0.223 4064525 18818 3.029 -0.827 0.041 -0.786 

 

0.223 - 0.435 5269539 17989 2.236 -0.690 0.048 -0.642 

 

0.435 - 0.6 10428465 21768 1.369 -0.280 0.051 -0.229 

 

0.6 - 0.725 20926130 21038 0.660 0.036 -0.020 0.016 

 

0.725 - 1 18779348 11001 0.385 0.309 -0.181 0.128 

 
       

SAVI -1.835 - 0.335 4024556 18816 3.042 -0.811 0.040 -0.771 

 

0.335 - 0.653 5201071 18062 2.262 -0.676 0.047 -0.629 

 

0.653 - 0.899 10354953 21833 1.375 -0.275 0.050 -0.225 

 

0.899 - 1.088 20821701 20995 0.658 0.035 -0.020 0.016 

 

1.088 - 1.499 18742193 10908 0.380 0.304 -0.178 0.126 

 
       

OSAVI -1.419 - 0.260 4023434 18923 3.060 -0.814 0.040 -0.774 

 

0.260 - 0.505 5200335 18066 2.263 -0.674 0.047 -0.627 

 

0.505 - 0.696 10357174 21767 1.371 -0.274 0.050 -0.224 

 

0.696 - 0.842 20813325 20897 0.656 0.035 -0.019 0.015 

 

0.842 - 1.160 18750101 10961 0.382 0.304 -0.178 0.126 

 
       

Tree Irregularities Very Low 35513411 61748 1.152 -0.238 0.270 0.032 

 

Low 14003828 13931 0.660 0.319 -0.120 0.199 

 

Medium 6976363 8341 0.793 0.277 -0.043 0.235 

 

High 2832024 4806 1.124 0.063 -0.003 0.060 

 

Very High 695318 1752 1.668 -0.115 0.001 -0.114 
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Table 2. Spatial relationship between each indicator and the landslides for the FR and WoE (dormant landslide) 

 

Factor Class Pixels in Domain Landslide Pixel Frequency Ratio W+ W- Wf 

DVI -1951 - 502.996 5753762 26043 2.946 -0.740 0.056 -0.684 

 

502.996 - 908.243 10065677 26051 1.687 -0.364 0.061 -0.303 

 

908.243 - 1290.976 15134013 27086 1.168 -0.111 0.036 -0.076 

 

1290.976 - 1651.196 17285810 8123 0.307 0.187 -0.088 0.099 

 

1651.196 - 3790 10905079 3311 0.198 0.328 -0.091 0.237 

 
       

NDVI -1 - 0.223 4064525 18818 3.029 -0.827 0.041 -0.786 

 

0.223 - 0.435 5269539 17989 2.236 -0.690 0.048 -0.642 

 

0.435 - 0.6 10428465 21768 1.369 -0.280 0.051 -0.229 

 

0.6 - 0.725 20926130 21038 0.660 0.036 -0.020 0.016 

 

0.725 - 1 18779348 11001 0.385 0.309 -0.181 0.128 

 
       

SAVI -1.835 - 0.335 4024556 18816 3.042 -0.811 0.040 -0.771 

 

0.335 - 0.653 5201071 18062 2.262 -0.676 0.047 -0.629 

 

0.653 - 0.899 10354953 21833 1.375 -0.275 0.050 -0.225 

 

0.899 - 1.088 20821701 20995 0.658 0.035 -0.020 0.016 

 

1.088 - 1.499 18742193 10908 0.380 0.304 -0.178 0.126 

 
       

OSAVI -1.419 - 0.260 4023434 18923 3.060 -0.814 0.040 -0.774 

 

0.260 - 0.505 5200335 18066 2.263 -0.674 0.047 -0.627 

 

0.505 - 0.696 10357174 21767 1.371 -0.274 0.050 -0.224 

 

0.696 - 0.842 20813325 20897 0.656 0.035 -0.019 0.015 

 

0.842 - 1.160 18750101 10961 0.382 0.304 -0.178 0.126 

 
       

Tree Irregularities Very Low  35513411 61748 1.152 -0.238 0.270 0.032 

 

Low 14003828 13931 0.660 0.319 -0.120 0.199 

 

Medium 6976363 8341 0.793 0.277 -0.043 0.235 

 

High 2832024 4806 1.124 0.063 -0.003 0.060 

 

Very High 695318 1752 1.668 -0.115 0.001 -0.114 

 

 

3.6 Validation of Landslide Activity Probability Models 

Validation of the produced landslide activity probability maps 

reveals the reliability of the results. The ‘success rate’ and 

‘prediction rate’ methods are used in the validation process of 

map. The success rate allows to determine how well the 

resultant maps have classified the areas of existing landslides. 

However, this may be not sufficient for evaluation of the 

model’s predictability, since the dataset utilized in the 

modelling. Therefore, prediction rate using the validation 

dataset (30% of the landslide inventory) can explain how well 

the models to predict future landslides.  

 

ROC is a popular method that can show the success and 

prediction curves of the output. This method provide a graph of 

‘sensitivity’ versus ‘specificity’. Sensitivity indicates as the 

ratio of unstable pixels above a desired threshold that correctly 

predicted by the model over the total observed unstable pixels 

and specificity is the ratio of stable pixels below the desired 

threshold that correctly predicted by the model over the total 

observed stable pixels. The AUC is calculated as the total area 

of polygons between the thresholds as 

 

 
 

 

where xi is (1-specificity) and yi is sensitivity at the threshold i. 

An AUC value in the range of 0.90-1.00 is considered as 

excellent, 0.80-0.90 indicates good, 0.70-0.80 fair, 0.60-0.70 

poor, and 0.50-0.60 fail accuracy of the model (Hasanat et al., 

2010) 
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4. RESULTS AND DISCUSSION 

 

The results of this study are divided into two (2) type of activity 

i.e. active and dormant landslide probability map for each 

method as shown in Figure 2 to Figure 5. All the generated 

maps were classified into three classes i.e. low probability, 

medium probability, and high probability. Figure 6 and Figure 7 

show the validatuin results for both methods with different 

landslide activities.  

 

 

 
Figure 2. Active landslide probability map using FR method 

 

 

 
Figure 3. Dormant landslide probability map using FR method 

 

 

 

 
Figure 4. Active landslide probability map using WoE method 

 

 
Figure 5. Dormant landslide probability map using WoE 

method 
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    (a)                                                     (b) 

 

Figure 6. The success rate for (a) active and (b) dormant landslide activities for different methods by ROC curve 

 

 

 
    (a)                                                     (b) 

 

Figure 7. The prediction rate for (a) active and (b) dormant landslide activities for different methods by ROC curve 

 

According to the results obtained, WoE method give more 

reliable results compared to FR method for both landslide 

activities. Similar cases for prediction rates where WoE still 

give better results in predicting landslide activity. The results 

also indicate that dormant activity recorded much better result 

than active landslide  

 

 

5. CONCLUSION 

Analysing vegetation anomaly patterns using remotely sensed 

data is a new approach of mapping and analysing landslide 

activity based on different landslide activity. Previously, many 

studies conducted an interpretation of morphological and 

drainage pattern for landslide activity identification. Different 

approach was taken in this study by focussing in the vegetation 

anomalies pattern. This study implements a procedure in 

generating landslide activity probability map from related 

vegetation indicator that obtained using remote sensing data. 

This procedure was done by characterizing the weight obtained 

from the landslide activity probability maps. The performances 

of the landslide activity probability map generated using 

frequency ration and weight of evidence approach were 

evaluated using success rate and prediction rate. The results 

revealed that vegetation anomalies as the indicator of analysing 

landslide activity is reliable as it gave good value for success 

rate especially for dormant landslide. The results obtained vary 

across different landslide activity, type and depth. 
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