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ABSTRACT: 

In recent years, there has been an increasing interest to use high-resolution multibeam dataset and Species Distribution Modelling 

(SDM) for seagrass habitat suitability model. This requires a specific variable derived from multibeam data and in-situ seagrass 

occurrence samples. The purpose of this study was (1) to derive variables from multibeam bathymetry data to be used in seagrass 

habitat suitability model, (2) to produce seagrass habitat suitability model using Maximum Entropy (MaxEnt), and (3) to quantify the 

contribution of each variable for predicting seagrass habitat suitability map. The study area was located at Merambong Shoal, 

covering an area of 0.04 km², situated along Johor Strait. First, twelve (12) variables were derived from bathymetry data collected 

from multibeam echosounder using Benthic Terrain Modeller (BTM) tool. Secondly, all variables and seagrass occurrence samples 

were integrated in MaxEnt to produce seagrass habitat suitability map. The results showed that the Area Under Curve (AUC) values 

based on training and test data were 0.88 and 0.65, respectively. The northwest region of survey area indicated higher habitat 

suitability of seagrass, while the southeast region of survey area indicated lower suitability. Bathymetry mean found to be the most 

contributed variables among others. The spatial distribution of seagrass from modelling technique agreed with the previous studies 

and they are found to be distributed at depths ranging from 2.2 to 3.4 meters whilst less suitable with increasing of water depth. This 

study concludes that seagrass habitat suitability map with high-resolution pixel size (0.5 meter) can be produced at Merambong 

Shoal using acoustic data from multibeam echosounder coupled with MaxEnt and underwater video observations. 

1. INTRODUCTION

1.1 Seagrass 

Seagrass species are the most valuable ecosystem in the world 

(Costanza et al., 1997). Seagrass provides a variety of 

ecosystem functions and services to the marine ecosystem such 

as food sources and habitats for others benthos (Pu and Bell, 

2017). Seagrass has been recognised as an important species for 

health and nutrients of estuarine system, reducing currents and 

erosion phenomena, and providing habitats for fish and shellfish 

species (Zimmerman, 2003). 

Nevertheless, this species experiencing reduction worldwide in 

recent year (Duarte, 2002) due to human activity which causes 

physical damage and water quality deterioration. Marine 

biodiversity around the globe has being degraded and collapse 

as a result of anthropogenic activities (Jackson et al., 2001; 

Halpern et al., 2008). Preservation and conservation of seagrass 

habitats are important to sustain coastal ecosystem health. Thus, 

it is accountable and become a priority to any agencies, coastal 

management and bodies to monitor seagrass habitats (Pu et al., 

2010). Therefore, seagrass distribution mapping is important 

task to address these issues. 

Various Species Distribution Model (SDM) methods have been 

used to produce habitat suitability models at fine-scale by using 

Multibeam Echosounder (MBES) data (Monk et al., 2010; 

Zapata-Ramírez et al., 2014; Guinotte and Davies, 2014; Ross 

et al., 2015) SDMs are used to predict the geographic range of a 

species given presence occurrence data and derivatives assumed 

to influence its distribution (Wilson et al., 2011; Peterson et al., 

2011; Solhjouy Fard et al., 2013). Maximum Entropy (MaxEnt) 

(Phillips et al., 2004b) is one of the methods that is widely used 

to predict the species distribution. MaxEnt has proven as a 

powerful modelling algorithm to predict the species distribution 

(Rebelo and Jones, 2010; Elith et al., 2011; Sardà-Palomera et 

al., 2012; Garcia et al., 2013; Marcer et al., 2013; Qin et al., 

2017; Hashim et al., 2017).  

To produce habitat suitability model for seagrass, SDM needs 

variables such as bathymetry from MBES. Most of these 

variables are derived to capture the seafloor morphology and 

proxy to habitat distributions (Diesing et al., 2014; Che Hasan 

et al., 2014; Subarno et al., 2016; Boswarva et al., 2018; 

Ierodiaconou et al., 2018). One of the tools is Benthic Terrain 

Modeller (BTM) to classify benthic environment especially 

seafloor geomorphology features (Walbridge et al., 2018). 

Specifically, BTM allow users to derive various bathymetry 

derivatives from MBES bathymetry and each of the derivative 

represent unique features, most likely related to the population 

of particular species. 

The objectives of this study are; (1) to derive bathymetric 

derivatives from MBES bathymetry data, (2) to produce 

seagrass habitat suitability map using Maximum Entropy 

(MaxEnt) combined with MBES data, and (3) to determine the 

most important variables for predicting seagrass habitats 

distribution.  
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2. METHODS 

2.1 Study Area 

The study area encompassed 0.04 kilometres square, off 

Merambong shoal, located at the south western coast of Straits 

of Johor in the Pontian district, Johor, Malaysia (Figure 1). 

Seagrass habitats in this area have diverse species assemblage 

completely adapted to an assortment of submerged life such as 

vertebrates (fishes), invertebrates (shrimps and starfish) and 

seaweeds (Sabri et al., 2013b). Seagrass also acts as the primary 

food source for species as vulnerable dugongs or sea cows 

(Dugong dugon), seahorses (Hippocampus spp.) and 

endangered green turtles (Chelonia mydas) (Bujang et al., 2006; 

Hearne et al., 2019).  

 

 
Figure 1. Location of study area. 

 

2.2 Bathymetry Data  

The bathymetry data collection was conducted from 4 April 

2016 until 17 April 2016 using a side-mounted WASSP WMB-

3250 Multibeam Echosounder (MBES) system which is 

designed to operate at shallow water environment. The MBES 

was integrated with a Fugro „„Starfix G2+‟‟ Differential GPS 

system for positioning system and navigation purposes. The 

patch test calibration was conducted for heave, pitch, roll and 

yaw corrections. Real-time navigation, data-logging, quality 

control and display were provided by the QINSy software. The 

Minos Sound Velocity Profiler was used to measure the actual 

speed of sound propagated in the water column and correction 

for the actual depth. 

 

The raw MBES bathymetry data was processed in Qimera, and 

HIPS and SIPS to obtain gridded bathymetry. The cleaning and 

filtering process were applied to the raw MBES bathymetry data 

to eliminate systematic and random errors such as roll, pitch, 

and heading errors, positioning errors, height errors, and 

latency. The spikes and noises from the raw MBES bathymetry 

data were removed in order to have high quality of gridded 

bathymetry.  The outcome of the acoustic data processing was 

gridded bathymetry and then was exported as a raster format for 

subsequent process. The spatial resolution of gridded 

bathymetry was 0.5 meters. 

 

2.3 Seagrass Occurrence Data 

The seagrass occurrence data have been recorded across MBES 

surveyed area around Merambong Shoal using GoPro Hero 4. 

The GoPro Hero 4 was mounted on a customised cage as a 

ballast to provide video evidence (Figures 2 & 3). The recorded 

video data was classified according to seagrass occurrences 

based on dropping locations. The samples were georeferenced 

using coordinate recorded by Fugro „„Starfix G2+‟‟ Differential 

GPS system. The final seagrass occurrence data includes five 

(5) presence and four (4) absence points (Table 1). In this study, 

MaxEnt requires presence-only data to produce seagrass habitat 

suitability model and therefore absence data was not used.  

 
Figure 2. Visual in-situ sampling using GoPro Hero 4 mounted 

on a customize cage. 

 

 
Figure 3. Sample image recorded by GoPro Hero 4. 

 

 

ID Seagrass 

Occurrence 

Depth 

(meter) 

X1 Presence 3.25 

X3 Absence 4.55 

X4 Absence 5.26 

X5 Presence 3.33 

GS2 Presence 2.40 

GS5 Presence 3.33 

GS8 Presence 2.76 

GS10 Absence 3.88 

GS13 Absence 5.26 

Table 1. The in-situ samples used in this study. 

 

2.4 Sediment Data 

Sediment types play a significant role in determining the 

suitability of seagrass habitat. Sediment sampling has been 

conducted across MBES surveyed area around Merambong 

Shoal using Van Veen Grab sampler. The samples were 

georeferenced using coordinate recorded by Fugro „„Starfix 

G2+‟‟ Differential GPS system.  All sediment samples were 
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analysed using Particle Size Analysis to determine sediment 

types. The final sediment samples data were recorded with 

sediment composite percentage for each sample point (Table 2). 

 

ID Clay Silt 
San

d 
Gravel 

X1 17 30 46 7 

X3 14 78 8 

X4 12 18 70 0 

X5 8 78 14 

GS2 9 20 66 5 

GS5 9 85 6 

GS8 6 20 58 16 

GS10 12 85 3 

GS13 11 80 9 

Table 2. The sediment samples used in this study and their 

composite percentage (%). The bold values highlighted the 

percentage % of sand are the highest amongst other samples. 

 

2.5 Derived Variables 

Seabed geomorphology features are important for marine 

biodiversity. In this study, fourteen (14) variables (Table 3) 

were derived from gridded bathymetry using Benthic Terrain 

Modeller (BTM) tool (Walbridge et al., 2018); bathymetry 

variance, bathymetry standard deviation, bathymetry mean, 

curvature, profile curvature, plan curvature, aspect, sine of 

aspect, cosine of aspect, slope, Vector Ruggedness Measure 

(VRM), Benthic Position Index (BPI) zone (broad and fine 

scale BOI), based on previous studies (Micallef et al., 2012; 

Hasan et al., 2014; Diesing et al., 2014; Subarno et al., 2016; 

Ierodiaconou et al., 2018). Each variable is potentially 

important to define the distribution of seagrass. All variables 

were in raster format to achieve a set of co-located variables and 

produced high-resolution of seagrass habitat suitability model.   

 

No

. 

Variables Description 

1 Bathymetry Bathymetry provides information 

of water depth. 

2 Bathymetry 

Mean 

Bathymetry mean is a 

transformation from bathymetry 

using mean calculation. 

3 Bathymetry 

Standard 

Deviation 

Bathymetry standard deviation is 

a transformation from 

bathymetry using standard 

deviation calculation. 

4 Bathymetry 

Variance 

Bathymetry variance is a 

transformation from bathymetry 

using variance calculation. 

5 Broad scale BPI  Classifies the bathymetry into 

several classes of surficial 

characteristics (broad scale). 

(Inner radius = 100, Outer 

Radius = 1000, Scale factor = 

500) 

6 Fine scale BPI Classifies the bathymetry into 

several classes of surficial 

characteristics (fine scale). 

(Inner radius = 75, Outer Radius 

= 750, Scale factor = 375) 

7 Curvature Curvature is a second-order 

derivative from bathymetric data 

that displayed the shape of 

curvature of the slope that using 

basic terrain parameters 

described by Evans (1980). 

8 Profile Curvature Profile curvature is the curvature 

of the surface in the direction of 

slope. 

9 Plan Curvature Plan curvature is the curvature of 

the surface perpendicular to the 

slope direction. 

10 Aspect Aspect is defined as a raster 

surface with maximum rate of 

change in the slope from each 

cell along with direction. 

11 Sine of Aspect Sine of aspect is a 

transformation of aspect to 

measure of “northness” 

downslope direction 

12 Vector 

Ruggedness 

Measure (VRM)  

Vector Ruggedness Measure 

(VRM) is defined as terrain 

ruggedness with a surface to 

planar area ratio.  

13 Slope Calculate the rate of maximum 

change in depth from each cell 

of a bathymetry in degree units. 

Table 3. The variables used in this study 

 

2.6 Seagrass Habitat Suitability Model 

Maximum Entropy (MaxEnt) model was used to produce 

seagrass habitat suitability model. MaxEnt is a machine learning 

method that compares the geographical conditions encountered 

at known presence species location, most commonly derived 

from GIS layers (Phillips et al., 2004a; Phillips et al., 2004b; 

Phillips et al., 2006; Elith et al., 2011; Downie et al., 2013). 

The seagrass habitat suitability model was built using MaxEnt 

Version 3.4.1 available (Phillips et al., 2017). First, the seagrass 

occurrence data and variables were simultaneously applied to 

this model. Twelve (12) variables were treated as continuous 

variables; bathymetry, bathymetry variance, bathymetry 

standard deviation, bathymetry mean, curvature, profile 

curvature, plan curvature, aspect, sine of aspect, cosine of 

aspect, slope, and Vector Ruggedness Measure (VRM) The two 

(2) of bathymetric variables were treated as categorial variables; 

broad scale BPI, and fine scale BPI. 

 

The regularised multiplier, maximum number of background 

points, maximum iterations, and coverage threshold were set as 

default settings since these settings has been proven to achieve 

good modelling performance (Phillips and Dudík, 2008). To 

obtain a stable model, this study has used ten (10) replicate 

bootstrap procedures for the final models. Each of the replicates 

used a randomly selected seagrass presence-only data. The 

seagrass presence-only data were separated into training data 

and test data (75% and 25% of the data, respectively) (Briscoe 

et al., 2014; Wang et al., 2017). A set of seagrass occurrence 

data that contained five (5) drop locations within the surveyed 

area was used. The MaxEnt model was validated using test 

dataset consisting of one (1) presence data for test set. The 

output format is logistic, as this format can be portrayed in 

logistic habitat suitability index ranging from the lowest “0” to 

the highest “1”. 
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2.7 Evaluation of Model Performance 

For evaluating model performance, the test data set was used to 

evaluate the seagrass habitat suitability model. This study 

applied the threshold independent measure, which is Area 

Under the Curve (AUC) (Swets, 1988), to test the 

discriminative potential, i.e. the potential of the model to 

distinguish between suitable seagrass habitat areas and less 

suitable seagrass habitat area. The AUC is calculated based on 

the specificity and sensitivity of the predictive model. The 

specificity and sensitivity indicated the success rate for 

classifying suitable or less suitable seagrass habitat, 

respectively. The AUC value of 1 indicates perfect model 

performance to discriminated the seagrass habitat suitability 

while a value of 0.5 indicates that the model is poor 

discrimination than random model (Fielding and Bell, 1997; 

Pearce and Ferrier, 2000; Downie et al., 2013). According to 

Hosmer Jr et al. (2013), AUC values over 0.9 indicate excellent, 

0.8 to 0.9 indicate very good, 0.7 to 0.8 as satisfactory and 

below 0.7 represent poor discriminative ability. 

 

MaxEnt also produced Jackknife test used to derive variable 

importance, expressed as AUC for seagrass habitat suitability 

model that used all the derived variables.  Furthermore, 

response curves from variables for the seagrass habitat 

suitability model was used to examine the characteristic of 

seafloor geomorphology and seagrass occurrence, measured by 

their probabilities to predict suitability of seagrass habitat.  

 

 

3. RESULTS 

Figure 4 shows the high-resolution bathymetry map 

representing water depth at study area, overlaid with the 

distribution of points of seagrass occurrence Seagrass at this 

area are distributed at depth ranging from 2.2 to 3.4 meters. 

Comparison between seagrass occurrences and sediment types 

are shown in Table 2. Sediment types based on presence-

absence seagrass occurrences were dominated by sand, followed 

by silt, clay, and gravel.  

 

 
Figure 4 . Bathymetry map and seagrass occurrences. 

 

 

The MaxEnt model was successful in predicting the habitat 

distribution of seagrass and obtained satisfactory result, with 

seagrass habitat suitability values ranging from 0.714 to 0.002 

(Figure 5). The high value indicated suitable area for seagrass 

with low value indicated less suitable. 

 

 
Figure 5. Seagrass habitat suitability model produced by 

MaxEnt model. 

 

The MaxEnt model was successful in predicting the seagrass for 

both dataset, training and test dataset. The MaxEnt model 

generated two (2) ROC curves, displaying AUC values, for 

seagrass based on training data and test dataset (Figure 6). The 

AUC values based on the training and test data set were 0.88 

and 0.65, respectively which is higher than 0.50 of a random 

model. Overall, the performances of the models were good for 

predicting seagrass habitat distribution in training, except for 

the test dataset.  

 

 
Figure 6. Seagrass habitat suitability model produced by 

MaxEnt model. 

 

Bathymetry mean was considered as a variable with the highest 

percent contributions (18.7%) to the seagrass habitat suitability 

model (Table 4). This was followed by cosine of aspect, Vector 
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Ruggedness Measure (VRM), curvature, and sine of aspect. 

When each of the variable was used alone, the result shows that 

all variables received AUC values more than 0.5 except sine of 

aspect and cosine of aspect when used in isolation in Jackknife 

test (Figure 7). 

 

Variable Percent of  

Bathymetry Mean 18.7 

Cosine of Aspect 16.3 

Vector Ruggedness Measure 

(VRM) 

15.7 

Curvature 15.0 

Sine of Aspect 13.7 

Table 4. The variables with high percent contributions (>10%). 

 

 

Figure 7. The Jackknife test for variable importance, expressed 

as AUC for seagrass habitat suitability model using each 

variable. 

 

Figures 8 to 12 show the response of logistic probability of 

seagrass occurrence of each variables that have large percent of 

contribution (>10%) in predicting seagrass habitat for this 

model. The red lines on these figures indicated mean response 

and blue shaded show the standard deviation. It can be seen 

from these responses that the seagrass model derived in this area 

were distributed at 3.0 meter water depths, cosine of aspect at 

0.6, almost zero ruggedness and curvature, and 0.8 sine of 

aspect. 

 

 

 

Figure 8. Response curves of mean bathymetry for the seagrass 

habitat suitability model. 

 

 

Figure 9. Response curves of cosine of aspect for the seagrass 

habitat suitability model. 

 

 

Figure 10. Response curves of Vector Ruggedness Measure 

(VRM) for the seagrass habitat suitability model. 

 

 

Figure 11. Response curves of curvature for the seagrass habitat 

suitability model. 
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Figure 12. Response curves of sine of aspect for the seagrass 

habitat suitability model. 

 

 

4. DISCUSSION 

This study is among the first attempt to predict the suitable 

habitat of the seagrass in Malaysia using acoustic data from 

MBES. The results from this study demonstrated that the 

distribution of seagrass can be successfully modelled using 

MaxEnt model, with seagrass presence-only data and variables 

derived from MBES. The training model was slightly better 

than test model, in term of AUC (0.88 and 0.65). One of the 

factors is mainly because the seagrass occurrence data (i.e. 

presence-only) was too small for training and test dataset.  In 

this preliminary study, only nine (9) samples were acquired with 

five (5) presence data and four (4) absence data. As MaxEnt can 

only use presence data to run the model, therefore the model 

might suffer from insufficient presence-only data. MaxEnt has 

been shown to perform well when sample sizes remain small 

(Elith* et al., 2006), but larger sample sizes may lead the 

tendency of predictive power become high (Pearson et al., 

2007; Wan et al., 2019). It is suggested that other modelling 

techniques be tested where both presence and absence data can 

be incorporated, simultaneously. 

 

Seagrass habitat in this study are distributed at depth ranging 

from 2.2 to 3.4 meters. This is supported by the previous studies 

with similar depths, ranging from  2 to 2.7 meters  (Bujang et 

al., 2006; Kassim et al., 2009) and 2 to 3 meters (Kassim et al., 

2009; Hashim et al., 2014). In addition, the model also shows 

that seagrass is less suitable with depth ranging from 3.5 to 5.9 

meters. This could be due to the rate of light penetration 

through water column. Seagrass requires plenty of sun light to 

grow. Changes to this factor could contribute to the declination 

of seagrass population (Waycott et al., 2005). Sabri et al. 

(2013a) have shown in their study that light or water depth 

could be the factors that limit the distribution of seagrass.  

Although seagrass may be widely distributed in the study area, 

the results also indicated a few areas where seagrass habitats are 

less suitable. These areas are characterised as deep areas which 

light penetration is low and turbidity is high, intruded the 

photosynthesis reaction (Zakaria and Bujang, 2011). 

 

Seafloor geology, particular topography is known to influence 

the population of seagrass (Brown et al., 2004; Micallef et al., 

2012). The complex physical environment is also important as it 

influences the diversity of habitats for marine lives 

(Ierodiaconou et al., 2007; Degraer et al., 2008; Lucieer et al., 

2013). In this study, bathymetry mean found to be more 

important than the rests because computing mean from 

bathymetry map has filtered and smoothed the original 

bathymetry map. The other variables which are derived from the 

bathymetry were less important because the area is quite flat 

and does not include large seafloor topographic variations. It 

can be explained from the sediment analysis that the area is a 

sandy environment, which make it suitable for seagrass habitats. 

As this study only concern with bathymetric data from MBES, 

future study should also include backscatter data (i.e. hardness 

and softness) of the seafloor to improve modelling results. 

 

 

5. CONCLUSION 

This study used acoustic data from MBES and MaxEnt 

modelling approach to predict suitable seagrass habitat in 

Merambong Shoal. The suitable habitat for seagrass was 

associated with the bathymetry depths ranging from 2.2 to 3.4 

meters. Consequently, this study concluded that predictive 

modelling is a valuable tool to predict the distribution of 

seagrass. The modelling technique used in this study is also 

useful to quantity the contribution of each variable to the model. 

As this is a preliminary study to construct seagrass habitat 

suitability map in this area, a further investigation is needed in 

the future to include larger area and increase number of 

sampling points. Accurate seagrass suitability map is crucial to 

study, conserve and monitor seagrass habitats in our coastal 

waters from anthropogenic activities and climate change.    

 

 

ACKNOWLEDGEMENTS  

The author would like to thank the Ministry of Education and 

Universiti Teknologi Malaysia for funding this research under 

Research Grant (Vote number: R.K130000.7840.4F953) 

Special thanks to Prof. Mohd Razali Mahmud and team at 

Faculty of Built Environment and Surveying, Universiti 

Teknologi Malaysia, Johor Bahru for data collection used in 

this study. 

 

 

REFERENCES 

Boswarva, K., Butters, A., Fox, C. J., Howe, J. A., & 

Narayanaswamy, B. (2018). Improving marine habitat mapping 

using high-resolution acoustic data; a predictive habitat map for 

the Firth of Lorn, Scotland. Continental Shelf Research, 168, 

39-47. doi:https://doi.org/10.1016/j.csr.2018.09.005 

 

Briscoe, D. K., Hiatt, S., Lewison, R., & Hines, E. (2014). 

Modeling habitat and bycatch risk for dugongs in Sabah, 

Malaysia. Endangered Species Research, 24(3), 237-247.  

 

Brown, C. J., Hewer, A. J., Meadows, W. J., Limpenny, D. S., 

Cooper, K. M., & Rees, H. L. (2004). Mapping seabed biotopes 

at hastings shingle bank, eastern English Channel. Part 1. 

Assessment using sidescan sonar. Journal of the Marine 

Biological Association of the United Kingdom, 84(3), 481-488.  

 

Bujang, J., Zakaria, M., & Arshad, A. (2006). Distribution and 

significance of seagrass ecosystems in Malaysia. Aquatic 

Ecosystem Health & Management, 9(2), 203-214. 

doi:10.1080/14634980600705576 

 

Che Hasan, R. C., Ierodiaconou, D., Laurenson, L., & Schimel, 

A. (2014). Integrating multibeam backscatter angular response, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-463-2019 | © Authors 2019. CC BY 4.0 License.

 
468



 

mosaic and bathymetry data for benthic habitat mapping. Plos 

one, 9(5), e97339.  

 

Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., 

Hannon, B., . . . Paruelo, J. (1997). The value of the world's 

ecosystem services and natural capital. nature, 387(6630), 253.  

Degraer, S., Verfaillie, E., Willems, W., Adriaens, E., Vincx,  

 

M., & Van Lancker, V. (2008). Habitat suitability modelling as 

a mapping tool for macrobenthic communities: an example from 

the Belgian part of the North Sea. Continental Shelf Research, 

28(3), 369-379.  

 

Diesing, M., Green, S. L., Stephens, D., Lark, R. M., Stewart, 

H. A., & Dove, D. (2014). Mapping seabed sediments: 

Comparison of manual, geostatistical, object-based image 

analysis and machine learning approaches. Continental Shelf 

Research, 84, 107-119.  

 

Downie, A.-L., von Numers, M., & Boström, C. (2013). 

Influence of model selection on the predicted distribution of the 

seagrass Zostera marina. Estuarine, Coastal and Shelf Science, 

121-122, 8-19. doi:https://doi.org/10.1016/j.ecss.2012.12.020 

 

Duarte, C. M. (2002). The future of seagrass meadows. 

Environmental conservation, 29(2), 192-206.  

 

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & 

Yates, C. J. (2011). A statistical explanation of MaxEnt for 

ecologists. Diversity and Distributions, 17(1), 43-57.  

 

Elith*, J., H. Graham*, C., P. Anderson, R., Dudík, M., Ferrier, 

S., Guisan, A., . . . Lehmann, A. (2006). Novel methods 

improve prediction of species‟ distributions from occurrence 

data. Ecography, 29(2), 129-151.  

 

Fielding, A. H., & Bell, J. F. (1997). A review of methods for 

the assessment of prediction errors in conservation 

presence/absence models. Environmental conservation, 24(1), 

38-49.  

 

Garcia, K., Lasco, R., Ines, A., Lyon, B., & Pulhin, F. (2013). 

Predicting geographic distribution and habitat suitability due to 

climate change of selected threatened forest tree species in the 

Philippines. Applied Geography, 44, 12-22.  

 

Guinotte, J., & Davies, A. (2014). Predicted Deep-Sea Coral 

Habitat Suitability for the US West Coast (Vol. 9). 

 

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., 

Micheli, F., D'agrosa, C., . . . Fox, H. E. (2008). A global map 

of human impact on marine ecosystems. science, 319(5865), 

948-952.  

 

Hashim, M., Ito, S., Numata, S., Hosaka, T., Hossain, M. S., 

Misbari, S., Yahya, N.N., Ahmad, S. (2017). Using fisher 

knowledge, mapping population, habitat suitability and risk for 

the conservation of dugongs in Johor Straits of Malaysia. 

Marine Policy, 78, 18-25. 

doi:http://doi.org/10.1016/j.marpol.2017.01.002 

 

Hashim, M., Yahya, N. N., Ahmad, S., Komatsu, T., Misbari, 

S., & Reba, M. (2014). Determination of seagrass biomass at 

Merambong Shoal in Straits of Johor using satellite remote 

sensing technique. Malay. Nat. J, 66, 20-37.  

 

Hearne, E. L., Johnson, R. A., Gulick, A. G., Candelmo, A., 

Bolten, A. B., & Bjorndal, K. A. (2019). Effects of green turtle 

grazing on seagrass and macroalgae diversity vary spatially 

among seagrass meadows. Aquatic Botany, 152, 10-15. 

doi:https://doi.org/10.1016/j.aquabot.2018.09.005 

 

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). 

Applied logistic regression (Vol. 398): John Wiley & Sons. 

 

Ierodiaconou, D., Laurenson, L., Burq, S., & Reston, M. 

(2007). Marine benthic habitat mapping using Multibeam data, 

georeferencedvideo and image classification techniques in 

Victoria, Australia. Journal of Spatial Science, 52(1), 93-104.  

 

Ierodiaconou, D., Schimel, A. C., Kennedy, D., Monk, J., 

Gaylard, G., Young, M., . . . Rattray, A. (2018). Combining 

pixel and object based image analysis of ultra-high resolution 

multibeam bathymetry and backscatter for habitat mapping in 

shallow marine waters. Marine Geophysical Research, 39(1-2), 

271-288.  

 

Jackson, J. B., Kirby, M. X., Berger, W. H., Bjorndal, K. A., 

Botsford, L. W., Bourque, B. J., . . . Estes, J. A. (2001). 

Historical overfishing and the recent collapse of coastal 

ecosystems. science, 293(5530), 629-637.  

 

Kassim, Z., Diyana, F., & Suhaili, A. (2009). Benthic 

Community of the Sungai Pulai Seagrass Bed, Malaysia (Vol. 

28). 

 

Lucieer, V., Hill, N. A., Barrett, N. S., & Nichol, S. (2013). Do 

marine substrates „look‟and „sound‟the same? Supervised 

classification of multibeam acoustic data using autonomous 

underwater vehicle images. Estuarine, Coastal and Shelf 

Science, 117, 94-106.  

 

Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., & Pino, J. 

(2013). Using species distribution modelling to disentangle 

realised versus potential distributions for rare species 

conservation. Biological Conservation, 166, 221-230.  

 

Micallef, A., Le Bas, T. P., Huvenne, V. A. I., Blondel, P., 

Hühnerbach, V., & Deidun, A. (2012). A multi-method 

approach for benthic habitat mapping of shallow coastal areas 

with high-resolution multibeam data. Continental Shelf 

Research, 39-40, 14-26. 

doi:https://doi.org/10.1016/j.csr.2012.03.008 

 

Monk, J., Ierodiaconou, D., Versace, V., Bellgrove, A., Harvey, 

E., Rattray, A., . . . P. Quinn, G. (2010). Habitat suitability for 

marine fishes using presence-only modelling and multibeam 

sonar (Vol. 420). 

 

Pearce, J., & Ferrier, S. (2000). An evaluation of alternative 

algorithms for fitting species distribution models using logistic 

regression. Ecological Modelling, 128(2-3), 127-147.  

 

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend 

Peterson, A. (2007). Predicting species distributions from small 

numbers of occurrence records: a test case using cryptic geckos 

in Madagascar. Journal of Biogeography, 34(1), 102-117.  

 

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., 

Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). 

Ecological niches and geographic distributions (MPB-49) (Vol. 

56): Princeton University Press. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-463-2019 | © Authors 2019. CC BY 4.0 License.

 
469



 

 

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & 

Blair, M. E. (2017). Opening the black box: an open-source 

release of Maxent. Ecography, 40(7), 887-893. 

doi:10.1111/ecog.03049 

 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). 

Maximum entropy modeling of species geographic 

distributions. Ecological Modelling, 190(3), 231-259. 

doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026 

 

Phillips, S. J., & Dudík, M. (2008). Modeling of species 

distributions with MAXENT: new extensions and a 

comprehensive evaluation (Vol. 31). 

 

Phillips, S. J., Dudík, M., & Schapire, R. (2004a). A maximum 

entropy approach to species distribution modeling. Paper 

presented at the Proceedings of the twenty-first international 

conference on Machine learning. 

 

Phillips, S. J., Dudík, M., & Schapire, R. E. (2004b). A 

maximum entropy approach to species distribution modeling. 

Paper presented at the Proceedings of the twenty-first 

international conference on Machine learning. 

 

Pu, R., & Bell, S. (2017). Mapping seagrass coverage and 

spatial patterns with high spatial resolution IKONOS imagery. 

International Journal of Applied Earth Observation and 

Geoinformation, 54, 145-158. 

doi:http://dx.doi.org/10.1016/j.jag.2016.09.011 

 

Pu, R., Bell, S., Levy, K. H., & Meyer, C. (2010, 25-30 July 

2010). Mapping detailed seagrass habitats using satellite 

imagery. Paper presented at the 2010 IEEE International 

Geoscience and Remote Sensing Symposium. 

 

Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., . . 

. Pei, S. (2017). Maxent modeling for predicting impacts of 

climate change on the potential distribution of Thuja 

sutchuenensis Franch., an extremely endangered conifer from 

southwestern China. Global Ecology and Conservation, 10, 

139-146. doi:https://doi.org/10.1016/j.gecco.2017.02.004 

 

Rebelo, H., & Jones, G. (2010). Ground validation of 

presence‐ only modelling with rare species: a case study on 

barbastelles Barbastella barbastellus (Chiroptera: 

Vespertilionidae). Journal of Applied Ecology, 47(2), 410-420.  

 

Ross, L. K., Ross, R. E., Stewart, H. A., & Howell, K. L. 

(2015). The influence of data resolution on predicted 

distribution and estimates of extent of current protection of 

three „listed‟deep-sea habitats. Plos one, 10(10), e0140061.  

 

Sabri, S., Said, M., Azman, S., & Goto, M. (2013a). Seagrass at 

south western coast of johor (Vol. 8). 

 

Sabri, S., Said, M., Azman, S., & Goto, M. (2013b). Seagrass at 

south western coast of johor. Journal of Sustainability Science 

and Management, 8, 73-79.  

 

Sardà-Palomera, F., Brotons, L., Villero, D., Sierdsema, H., 

Newson, S. E., & Jiguet, F. (2012). Mapping from 

heterogeneous biodiversity monitoring data sources. 

Biodiversity and conservation, 21(11), 2927-2948.  

 

Solhjouy Fard, S., Sarafrazi, A., Moeini, M., & Ahadiyat, A. 

(2013). Predicting Habitat Distribution of Five Heteropteran 

Pest Species in Iran (Vol. 13). 

 

Subarno, T., Siregar, V. P., Agus, S. B., & Sunuddin, A. 

(2016). Modelling Complex Terrain of Reef Geomorphological 

Structures in Harapan-kelapa Island, Kepulauan Seribu. 

Procedia Environmental Sciences, 33, 478-486. 

doi:https://doi.org/10.1016/j.proenv.2016.03.100 

 

Swets, J. A. (1988). Measuring the accuracy of diagnostic 

systems. science, 240(4857), 1285-1293.  

 

Walbridge, S., Slocum, N., Pobuda, M., & Wright, D. J. (2018). 

Unified Geomorphological Analysis Workflows with Benthic 

Terrain Modeler. Geosciences, 8(3), 94.  

 

Wan, J.-Z., Wang, C.-J., & Yu, F.-H. (2019). Effects of 

occurrence record number, environmental variable number, and 

spatial scales on MaxEnt distribution modelling for invasive 

plants. Biologia, 1-10.  

 

Wang, B., Xu, Y., & Ran, J. (2017). Predicting suitable habitat 

of the Chinese monal ( Lophophorus lhuysii ) using ecological 

niche modeling in the Qionglai Mountains, China (Vol. 5). 

 

Waycott, M., Longstaff, B. J., & Mellors, J. (2005). Seagrass 

population dynamics and water quality in the Great Barrier Reef 

region: a review and future research directions. Marine 

Pollution Bulletin, 51(1-4), 343-350.  

 

Wilson, C. D., Roberts, D., & Reid, N. (2011). Applying 

species distribution modelling to identify areas of high 

conservation value for endangered species: A case study using 

Margaritifera margaritifera (L.). Biological Conservation, 

144(2), 821-829.  

 

Zakaria, M. H., & Bujang, J. S. (2011). Disturbances in 

seagrasses ecosystem in Malaysia. Seagrasses: resource status 

and trends in Indonesia, Japan, Malaysia, Thailand and 

Vietnam. Seizando-Shoten, Tokyo, 67-78.  

 

Zapata-Ramírez, P. A., Huete-Stauffer, C., Coppo, S., & 

Cerrano, C. (2014). Using MaxEnt to understand and predict 

the distribution of coralligenous environments. 

 

Zimmerman, R. C. (2003). A biooptical model of irradiance 

distribution and photosynthesis in seagrass canopies. Limnology 

and oceanography, 48(1part2), 568-585.  

 

 

 

Revised August  2019 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-463-2019 | © Authors 2019. CC BY 4.0 License.

 
470




