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ABSTRACT: 

 

The introduction of airborne Synthetic Aperture Radar (SAR) approach has successfully addressed several challenges for mapping 

and surveying applications Unlike other conventional sensors, airborne SAR mapping approach offers practicality and significant 

cost savings for the nation minimizing the need for ground control points on the ground in addition to providing high-resolution, 

day-and-night, cloud coverage and weather independent images, which in turn provides faster turnaround times for creation of large 

area geospatial data. Up-to-date building map is necessary to guide the decision making in many fields to understand the urban 

dynamics such as in disaster management, population estimation, planning and many other applications.  Whilst mapping and 

surveying work using airborne SAR have started to capture many interest among surveyors, professionals and practitioners abroad, 

Malaysia however is still lacking behind in term of the knowledge and the usage of this technology together with Deep Learning, 

Machine Learning approach especially in building extraction for topographic mapping and urban planning and development.  Deep 

learning is a subset of the machine learning algorithm. Recently, Deep Learning has been proposed to solve traditional artificial 

intelligent problems. In order to develop a sustainable national geospatial infrastructure for years to come, the integration between 

airborne SAR and other sensors as such LIDAR is therefore essential in Malaysia and in high demand for urban planning and 

management. Thus, this paper reviews current techniques and future trends of multi-sources Remote Sensing for building extraction.  

 

 

1. INTRODUCTION 

Data is the fuel that powers geospatial systems. Acquisition of 

accurate and reliable data is becoming increasingly important in 

which sensors and processing approach selection play a 

signature role. Over the last decade, Remote Sensing approach 

has been increasingly used in Malaysia especially in urban/city 

planning, monitoring, disaster management, mapping and many 

more (Abd Mubin et al., 2019; Hamedianfar et al., 2014; 

Meesuk et al., 2015; Shaharum et al., 2018). Remote sensing 

platform usually has a wide coverage, fast development and 

high frequency and provide high accuracy data. The sensors 

were mounted on various platforms such as space, air and 

ground to collect the data and perform the features extraction. 

Big company like Google employs high-resolution (HR) 

Remote Sensing images to provide vivid pictures of the earth’s 

surface. Many government agencies also rely on Remote 

Sensing images weather forecasting and meteorological 

application. 

 

As in the case of topographic mapping, high quality data 

acquisition plays a major part towards acquiring results at the 

highest level. Traditional practices in topographic mapping 

include surveying techniques coupled with rigorous geodetic 

networks on the ground for georeferencing purposes to create 

topographic sheets of large areas. Example of common issues 

faced by several countries including Malaysia whilst developing 

their topographic maps is its high cost of operations in 

recording the physical changes of the ever-expanding and 

continuously-developing nation. But even as the maps are being 

developed, they are already perversely out-dated, so the 

financial investment and the value of that investment are 

completely misaligned. This is especially true with ground-

based mapping and surveying campaign that historically 

requires a large sum of expenditure and highly laborious 

especially towards producing high accuracy elevation models 

used in creating contours for topographic maps. Since there 

have been rapid changes especially in urban area, it is necessary 

to produce very latest and up-to-date map for urban area for 

urban management and development. The speed of change in 

urban areas demands regular monitoring to identify areas of 

high population density and plan for sustainable urban 

development. Thus combining multispectral aerial imagery and 

digital surface models to extract urban buildings is needed for 

rapid monitoring.  

 

Remote Sensing object detection plays an important role toward 

producing an up-to-date map for environmental monitoring, 

geological hazard detection, land use land cover (LULC) 

mapping, geographic information system (GIS) update, 

precision agriculture, and urban planning. Recently, Deep 

Learning methods have shown tremendous success for Remote 

Sensing object detection interpretation problems in which 

algorithmic methods have deficits. Deep Learning are being 

used to work with remotely sensed imagery and geospatial data 

to solve problems in agriculture, utilities, transportation, 

defence, disaster response, and other industries. A prominent 

example is the classification and interpretation of images, where 

Deep Learning approaches outperform the traditional computer 

vision methods. This paper will highlight some of the previous 

project in building detection using conventional method and 

Deep Learning. 
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2. BUILDING DETECTION FOR MAPPING 

APPLICATION 

Object detection is the procedure of determining the instance of 

the class to which the object belongs and estimating the location 

of the object. Object detection is the foremost step in any 

activity. Being a cost-effective data resource, Remote Sensing 

data have been considered as the primary resource to generate 

and detect the object for mapping purposes. There are various 

methods for the detection of different types of objects in 

imagery (satellite and aerial images), such as trees, man-made 

object (roads, building, vehicles and many more) by using 

traditional method, machine learning and Deep Learning. 

Detecting single instance of class from image is called as single 

class object detection, whereas detecting the classes of all 

objects present in the image is known as multi class object 

detection. 

2.1 Building Detection Using Traditional Technique 

In last decade, there are various methods for the detection of 

different types of objects in RS imagery (satellite and aerial 

images), such as trees, man-made object (roads, building, 

vehicles and many more). In general, this task has been 

performed by human experts manually, so that it is very costly 

and time consuming. The workflow traditionally used for object 

detection is relatively straight-forward in Remote Sensing, the 

images was transform to raster image, and then inspected by 

human editors for building detection. If a building is found, the 

building is manually digitized and drawn by the editor. This is 

most time-consuming and expensive step in the manual search 

and digitization of polygons. Accurate pixel labelling of images 

is also complex attentional task for a human, because terrestrial 

objects have a great deal of variation in their shapes, and an 

object may be occluded by other objects such as trees and 

buildings' shadows. This will lead the problem of building 

generalization using traditional approaches and tends to 

eliminate the small object or building. Therefore, automatic 

extraction of buildings and roads is highly demanded and many 

attempts have been proposed in the Remote Sensing literature. 

To overcome this, both feature extractors and classifiers are 

automatically constructed using Deep Learning. 

  

2.2 Building Detection Using Machine Learning Technique 

With the advance of machine learning techniques, especially the 

powerful feature representations and classifiers, many recent 

approaches regarded object detection as a classification problem 

and have achieved significant improvements. Object detection 

can be performed by learning a classifier that captures the 

variation in object appearances and views from a set of training 

data in a supervised or semi-supervised or weakly supervised 

framework. The input of the classifier is a set of regions (sliding 

windows or object proposals) with their corresponding feature 

representations and the output is their corresponding predicted 

labels, i.e., object or not. Feature extraction, feature fusion, 

dimension reduction and classifier training play the most 

important roles in the performance of object detection and 

hence we mainly focus on reviewing these three crucial steps. 

 

Bellakaout, et al., (2016) conducted a research on an approach 

for automatic classification of aerial LIDAR data sorely into 

five groups of items: buildings, trees, roads, linear object and 

soil using single return LIDAR and processing the point cloud 

without generating DEM.  Topological relationship and height 

variation analysis were adapted to segment, preliminary, the 

entire point cloud preliminarily into upper and lower contours, 

uniform and non-uniform surface, non-uniform surfaces, linear 

objects, and others. This primary classification was used on to 

identify the upper and lower part of each building in an urban 

scene, needed to model buildings façades; and to extract point 

cloud of uniform surfaces which contain roofs, roads and 

ground used in the second phase of classification.   

 

R. Huang et al., (2018) proposed a method to extract buildings 

solely based on airborne LIDAR point clouds using a top-down 

strategy. First, the ground and non-ground points are separated. 

Second, a top level processing is used to recognize building 

regions via surface characteristics and penetrating capacities, 

which are calculated based on the object entity replacing the 

point and segment entities. Finally, a down-level processing is 

removed a non-building points from building regions. The 

results demonstrate that the proposed method could robustly 

extract the buildings with details (e.g., door eaves and roof 

furniture) and has good performance in distinguishing 

buildings. The average values of the area-based quality and 

object-based quality indicates that the proposed method has 

good performance for extracting buildings. 

 

LIDAR generates point clouds for digital surface models, digital 

elevation models and light intensity models. LIDAR has been 

used in the specially designed algorithms instead of optical 

sensor images to solve automatic building extraction problems   

(Canaz et al., 2015, Karsli et al., 2016) LIDAR provides more 

accurate height information but less accurate boundary lines. 

Considering the complementary advantages of LIDAR data and 

high-resolution optic image data, the fusion of two data sources 

is regarded as a promising procedure to detect the building 

boundaries  (Awrangjeb et al., 2010; (Awrangjeb et al., 2013; 

Cheng et al., 2013; Li et al., 2013).  

 

Nowadays, the emerging diverse remote sensors are available, 

obtain complementary information from different sources for 

materials on the surface of the earth. Such information can vary 

from spectral information obtained by passive sensors such as 

multispectral and hyperspectral images, to height and shape 

information acquired by LIDAR sensors, as well as texture 

information to amplitude and phase by SAR. The availability of 

data coming from these multiple sources now allows researchers 

worldwide to integrate such diverse information to improve 

object detection ability and classification performance. 

 

Many literatures on LIDAR applications emphasized the needs 

for data fusion in the processing phase of LIDAR data as a 

method to improve various feature extraction task. LIDAR 

alone however can give better accuracy in vertical component in 

comparison to Airborne SAR which is imperative to produce 

3D position of the ground. Point cloud produced by LIDAR 

also has been used in the specially designed algorithms instead 

of optical sensor images to solve automatic building extraction 

problems (Karsli et al., 2016; Michaelsen et al., 2005; 

Michaelsen, 2010)  

 

The LIDAR data can be used to characterize the elevation and 

object height information of the scene. (Karsli et al., 2016) 

proved that multi-features derived from combination of optical 

and LIDAR data can be successfully applied to solve the 

problem of automatic detection of buildings by using the 

proposed approach. LIDAR data provide a source of 

complementary information that can greatly assist in the 

classification of hyperspectral data, in particular when it is 

difficult to separate complex classes. This is because, in 
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addition to the spatial and the spectral information provided by 

hyperspectral data, LIDAR can provide very valuable 

information about the height of the surveyed area that can help 

with the discrimination of classes and their separability 

(Khodadadzadeh et al., 2015). 

 

Wegner et al., (2009) performed the study focuses on the 

combination of features from InSAR data and optical aerial 

imagery for building recognition in dense urban areas that 

combines line features from mono aspect InSAR data with 

classification results from one optical aerial image. The result 

shows that a combined analysis of InSAR and optical data 

improves detection results compared to building recognition 

based on merely a single data source. 

 

Hyperspectral image may not be able to precisely differentiate 

object composed of the same material which the same spectral 

characteristics (Plaza et al.,, 2007). It is difficult to differentiate 

such categories in the feature space. Rasti et al. (2017) 

performed the fusion of hyperspectral and LIDAR data called 

SLRCA fusion. The fusion methodology consists of two main 

phases. At phase I, spatial and elevation information from 

hyperspectral and LIDAR data sets is extracted using EPs. At 

phase II, the SLRCA fusion utilizes an SLRCA to fuse extracted 

features. The resulting fused features are of lower dimension 

than the profiles. Both RF and SVM classifiers were used to 

perform the classification task. It has been shown that applying 

EPs considerably improves the classification accuracies due to 

effectively extract spatial and contextual information. 

 

Daneshtalab, S., & Rastiveis, (2017) conducted the research on 

an automatic urban objects extraction using airborne Remote 

Sensing data to process and efficiently interpret the vast amount 

of airborne imagery and LIDAR data available today. The aim 

of this study is to propose a new approach to integrate high 

resolution aerial imagery and LIDAR data to improve the 

accuracy of classification using Support Vector Machine 

algorithm. In this study, extracted Normalized Digital Surface 

Model (nDSM) and pulse intensity were used for LIDAR 

classification together with three spectral visible bands (Red, 

Green and Blue) for feature vector for the orthoimage 

classification. The outputs of these classifications were then 

integrated in a decision level fusion system based on confusion 

matrices focusing on the urban area of Zeebruges, Belgium. 

Based on the output, several advantages can be seen on the 

image fusion with respect to a single shot dataset. With the 

capabilities of the proposed decision level fusion method, most 

of the object extraction difficulties and uncertainty can be 

minimized and, the overall accuracy and the kappa values can 

be improved between 7% and 10%, respectively. 

 

X. Huang et al., (2011) investigated information fusion 

approaches of high-resolution aerial images and elevation data 

from LIDAR for urban environment mapping. Three feature 

fusion methods have been proposed and compared: (1) The 

vector-stacking approach that combines spectral and LIDAR 

features in one classifier; (2) The re-classification approach that 

firstly processes spectral signals in a classifier and then 

integrates its output with LIDAR features to obtain the final 

result and (3) The post-processing approach that uses the 

LIDAR data to refine the results of spectral classification. The 

height features used in the above three algorithms are extracted 

from the LIDAR digital surface model (DSM) image; these 

include elevation difference, maximum and minimum values, 

variance and the grey-level co-occurrence matrix (GLCM) 

textures. In addition, the average height from object-based 

segmentation is also computed. Support vector machines 

(SVMs) were used as classifiers for all fusion schemes due to 

their capability and robustness for many classification problems. 

The three algorithms were evaluated using a 40-cm spatial 

resolution digital orthophoto and the corresponding LIDAR 

data of Odense, Denmark. Based on the experiments, the vector-

stacking method with the Maximum–Minimum (Max–Min) 

feature, the reclassification method with the Max–Min feature 

and the post-processing approach have obtained promising 

results (94.7%, 95.0% and 94.6%, respectively), which are 

significantly higher than the spectral-only classification 

(82.5%).  

 

Demir & Baltsavias, (2010) extracted man-made structures, 

especially buildings and secondly trees by combining 

information from aerial images and LIDAR data. They used 

four different approaches have been applied to exploit the 

information contained in the image and LIDAR data, extract 

different objects and finally buildings. The first method is based 

on DSM/DTM comparison in combination with NDVI 

(Normalised Difference Vegetation Index) analysis for building 

detection. For Vaihingen area, while there is no available DTM 

data, a morphological filtering approach (Zhang, Lin, & Ning, 

2013) has been applied to detect off-terrain objects. The second 

approach is a supervised multispectral classification refined 

with height information from LIDAR data and image-based 

DSM. The third method uses voids in LIDAR DTM and NDVI 

classification. The last method is based on the analysis of the 

density of the raw DSM LIDAR data.  

 

In each method, the basic idea was to get first preliminary 

results and improve them later using the results of the other 

methods. The methods have been tested on two dataset located 

at Zurich Airport, Switzerland, and Vaihingen region, Germany. 

The accuracy of the building detection process was evaluated by 

comparing the results with the reference data and computing the 

percentage of data correctly extracted and the percentage of 

reference data not extracted. The results from each method have 

been combined according to their error characteristics. Roof 

surfaces have been extracted and finally, the correctness of 

detection has been improved to 94% with remaining 7% 

omission error for Zurich airport, and 90% with remaining 17% 

omission error for the Vaihingen dataset.  

 

Further processes will be applied for the quality assessment of 

the detected roof planes and then direct 3D edge matching will 

be done and detection of 3D inner and outlines using aerial 

images will be generated. First 2D line segments will be 

extracted using Harris corner and canny edge detectors with 

splitting edges in Harris corner points. Then 2D line matching 

will be performed to reconstruct 3D lines. After extraction of 

3D lines, reconstruction of roofs will be completed by 

combination of 3D roof surfaces and 3D lines of the roofs. This 

combination has done with grouping of 3D lines according to 

their 3D surfaces. 

 

 

3. DEEP LEARNING (DL) 

Deep Learning (DL) is increasingly becoming an important 

field for Data Science, AI, Technology and our lives right now, 

and it deserves all of the attention is getting. Deep Learning is a 

subset of Machine Learning methodologies using artificial 

neural networks (ANN) inspired by the structure of neurons 

located in the human brain. DL came naturally to fit this 

missing spot to transform the way we do machine learning.  
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Deep Learning is an active field of research. Many researchers 

currently focus on finding the best models, topology of the 

networks, and the best ways to optimize their hyperparameters. 

The word deep refers to the presence of many layers in the 

artificial neural network. Recent years, tremendous progress has 

been made in applying Deep Learning techniques to computer 

vision. Their latest advancement in Deep Learning are blooming 

in computer science and more powerful and has been apply in 

wide range of application such as medical (Ronneberger et al., 

2015), biomedical (McKinley Richard et al., 2016), audio 

(Hershey et al., 2017), face detection (Haoxiang & Lin，Zhe, 

2015; Li, Haoxiang et. al, 2015)  and Remote Sensing.  

 

Traditional object detection methods are built on handcrafted 

features and shallow trainable architectures. Their performance 

easily stagnates by constructing complex ensembles which 

combine multiple low-level image features with high-level 

context from object detectors and scene classifiers. With the 

rapid development in Deep Learning, more powerful tools, 

which are able to learn semantic, high-level, deeper features, are 

introduced to address the problems existing in traditional 

architectures. 

 

3.1 Deep Learning Architecture 

With the advance in Deep Learning, researchers have developed 

novel deep architectures as an alternative to shallow 

architectures. Deep learning with deep neural networks is 

commonly used to learn high-level features hierarchically. 

Typical deep neural network architectures include stacked 

autoencoders (AE), deep belief networks (DBN), stacked 

denoising autoencoders (SDAE), and convolutional neural 

networks (CNN). Due to its local receptive fields, the CNN 

plays a dominant role for processing the visual-based issues. A 

primary use of the CNN is classification. The CNN can be 

employed to extract spatial information effectively via the local 

connections. 

 

3.1.1 Autoencoders (AE) 

 

The emerging development in Deep Learning of different 

architectures, which can be supervised or unsupervised have 

been designed and implemented for feature extraction and 

classification. An autoencoder as a neural network is an 

unsupervised learning algorithm that applies backpropagation, 

setting the target values to be equal to the inputs (Ermolaev, 

1998) achieved great success in generating abstract features of 

high dimensional data. An AE is composed of an encoder and a 

decoder. The main principle of AE as it name “Auto” presents 

that this method is unsupervised and “encoder” means it learns 

another representation of data (Meng et al., 2017). They can 

learn deep features automatically layer after layer, thus 

eliminating the need for manually designed features. 

Unsupervised deep neural architectures such SAE, SDAE and 

DBN have shown much better results than the previous methods 

regarding classification accuracy and have been apply of many 

researcher in Deep Learning for Remote Sensing. 

 

3.1.2 Convolutional Neural Networks (CNN) 

 

CNN is a supervised Deep Learning based method that has been 

widely used in analysis and processing of visual imagery 

outperforming existing Deep Learning methods in detection and 

classification tasks. A typical CNN architecture comprises of an 

input layer, a layer comprising of the various output classes 

(output layer), and in between them there are multiple hidden 

layers. The hidden layers comprise of convolution layers, own 

sampling or pooling layers, normalization layers, and fully 

connected (FC) layers. The final FC layer is linked to the output 

layer. During the training process, a CNN can automatically 

learn features from input data layer after layer, where high-level 

features are learnt from lower level features. These features are 

detected by filters in the output of the previous layer. 

 

CNNs can directly train a deep network without pretraining, 

achieving better Remote Sensing scene classification accuracies. 

The deep structure of CNNs allows the model to learn highly 

abstract feature detectors and to map the input features into 

representations that can clearly boost the performance of the 

subsequent classifiers. Deep learning models have been 

attractive for their high performance in learning hierarchical 

features from high-dimensional unlabelled data. By learning 

multilevel feature representations, Deep Learning models have 

been proved to be an effective tool for rapid object-oriented 

classification problems. Figure 1 shows the example of neural 

network architecture which the following structure is 

constructed with two (2) Neurons in the input layer, eight (8) 

Neurons in the 1st hidden layer, eight (8) Neurons in the 2nd 

hidden layer and  one (1) Neuron in the output layer. 

 

 

Figure 1. Example of neural network architecture 

 

3.2 Building Extraction Using Deep Learning 

Object recognition or object extraction in Remote Sensing is a 

core task. The used of Deep Learning method in Remote 

Sensing image has been preferred to extract the object for many 

purposes.  Saito et al., (2016) applied the convolutional neural 

networks to extract multiple objects from aerial image. Sherrah 

(2016), applied fully convolutional neural networks for dense 

semantic labelling of high-resolution aerial image. The 

approach is applied to the problem of labelling high-resolution 

aerial imagery where fine boundaries are importance.  

 

Generally, when using deep neural networks, we just normalize 

images and apply transformations to artificially increase the 

dataset, like mirror and small rotations. This happens because 

the convolutional layers of the neural network will gradually 

become feature extractors that could out-perform most of 

manual pre-processing.  
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CNN technique is implemented due to being not only efficient 

in learning highly discriminative image features such as 

buildings, but also partially robust to incomplete and poorly 

registered target maps. Zou et al., (2015)  introduce Deep 

Learning-based feature extraction for hyperspectral data 

classification by applying autoencoder (AE), which is one of the 

deep architecture-based models, to learn deep features of 

hyperspectral data in an unsupervised manner. The author 

exploit single-layer AE and multi-layer stacked AE (SAE) to 

learn shallow and deep features of hyperspectral data, 

respectively and propose a new way of extracting spatial 

dominated information with dealing the joint spectral–spatial 

information for classification framework.  

 

Romero et al., (2016) introduces the use of single-layer and 

deep convolutional networks into AE for data analysis to 

analyse the influence of depth and pooling of such networks on 

a wide variety of Remote Sensing images of different spatial 

and spectral resolutions, from MS and HS images, to very high 

geometrical resolution problems. The results shows the trained 

networks are very effective at encoding spatio spectral 

information of the images. Y. Chen, et al., (2014) adopt the AE 

for hyperspectral data classification methods and SAEs deep 

architecture. It is shown that AE extracted features are useful 

for classification. 

 

Deep CNN have been extensively used for object detection. 

Which became the state-of-the art for image recognition 

problems, it became possible to automatically detect buildings 

in Remote Sensing data (Bittner et al., 2017). CNN technique is 

implemented due to being not only efficient in learning highly 

discriminative image features such as buildings, but also 

partially robust to incomplete and poorly registered target maps.  

 

Automatic building footprint extraction become more 

challenges despite plenty of the algorithm have been develop 

using traditional computer vision to solve the problem in 

adequate to extract the building. Deep Learning shows the 

tremendous success to solve the problem for automatic building 

generalization. Sester et al., (2018) used existing network and 

proved that Deep Learning gives advantage of the building 

generalization task which not provided one classification for a 

given image patch but lead the classification of each pixel. The 

fact that many training data sets are available from given map 

series. Duarte et al., (2018) extract building damage with CNN 

by using three multi-resolution CNN feature fusion approach.  

 

Hamed et al., (2018) proposed Deep Learning approach for 

building detection using LIDAR-orthophoto fusion. The 

method utilized object - based analysis to create objects, a 

feature  - level fusion, an autoencoder-based dimensionality 

reduction to transform low -level features into compressed 

features, and a CNN to transform compressed features into high 

– level features, which were used to classify objects into 

buildings and background. The proposed architecture was 

optimized for the grid search method, and its sensitivity to 

hyperparameters was done with the best hyperparameters of the 

model are 128 filters in the CNN model, the Adamax optimizer, 

10 units in the fully connected layer of the CNN model, a batch 

size of 8, and a dropout of 0.2. The study was compare with the 

support vector machine (SVM) show that the proposed model 

with or without dimensionality reduction outperforms the SVM 

models in the working area. The result shows that the use of an 

autoencoder in DL models can improve the accuracy of building 

recognition in fused LIDAR–orthophoto data. 

 

Nogueira et al., (2017) analysed of three possible strategies for 

exploiting the power of existing convolutional neural networks 

(ConvNets or CNNs) in different scenarios from the ones they 

were trained: full training, fine tuning, and using ConvNets as 

feature extractors and shown the result using the features from 

the fine-tuned ConvNet with linear SVM obtains the best 

results. Yang et al., (2018) proposed the combination signed-

distance labels with SegNet, the preferred CNN architecture 

identified by extensive evaluations, to advance building 

extraction results to instance level and demonstrate the 

usefulness of fusing additional near IR information into the 

building extraction framework.  

 

Deep Learning, in short, is going much beyond machine 

learning and its algorithms that are either supervised or 

unsupervised. In Deep Learning it uses many layers of nonlinear 

processing units for feature extraction and transformation. 

Learning is based on multiple levels of features or 

representation in each layer with the layers forming a hierarchy 

of low-level to high-level features where traditional machine 

learning focuses on feature engineering, Deep Learning focuses 

on end-to-end learning based on raw features. Deep Learning 

has proven its performance in Remote Sensing field including 

in classification task and object recognition and have a good 

potential for future tool especially in building extraction task in 

urban area. 

 

 

4. CONCLUSION 

Nowadays, there is an emerging interest worldwide on the 

integration between the SAR and other remote sensors for 

various surveying and mapping applications. Resulting from 

SAR capabilities to generate wide-range DEM, the synergy 

between SAR and multiple sensors has brought in the potential 

of synoptic viewing and repetitive coverage that is expected to 

be capable of drastically reducing costs, timelines and 

improving the accuracy of topographic maps. It is also expected 

that both life and value of the initial investment in developing a 

topographic map via this approach can be extended – given the 

rapid advancement in Remote Sensing and image processing 

technologies to update maps on regular basis - thus changing 

the paradigm of traditional mapping in the past.  

 

Building extraction has been an active research area in Remote 

Sensing field. Even though there have been many achievement, 

there are still challenges that need to be addressed particularly 

for urban mapping and planning purposes. The emergence of 

Deep Learning will solve this limitation in which the extraction 

of building with fusion of multisource data can provide data 

duplications and useful information faster and more accurate 

compared to conventional methods. Recent literatures abroad 

highlighted Deep Learning as a new exciting tool in building 

extraction with advantages in dealing with occlusion, scale 

transformation and other limitation. Object detection using 

Deep Learning is growingly becoming a research hotspot in 

coming years and has the potential to be used for mapping 

applications in Malaysia. 
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