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ABSTRACT: 

 

These Mapping and estimation of seagrass total above-ground carbon (STAGC) using satellite-based techniques are required to fast-

track the achievement of the 2020 agenda on Sustainable Development Goals (SDG) 14th. This attainment is possible as seagrass 

habitats provide a critical coastal ecosystem for storing blue carbon stock, sediment accumulation, fisheries production and 

stabilisation of coastal environment. However, seagrasses are generally declining across the globe due to anthropogenic disturbance, 

resulting in a prolonged growth rate of seagrasses that varies according to the species compositions.  Therefore, this study aims at 

mapping and estimation of seagrass total above-ground carbon (STAGC) using Landsat ETM+ in the coastline of Penang.  These 

satellite images were calibrated with Bottom Reflected Index (BRI) and Depth Invariant Index (DII) to compare the estimate of the 

STAGC for more accuracy. The leaving radiances of the seagrass were correlated with the corresponding in-situ measurements to 

predict seagrass carbon. This established relationship with BRI image shown a healthy correlation with STAGB (R2 = 0.992, p ≤ 

0.001). Whereas the STAGB versus DII relationship has less accuracy (R2 = 0.955, p ≤ 0.01), adjusted R2 = 0.980 and 0.978 were 

recorded for both BRI and DII STAGC estimate using the logistic model.  Therefore, careful management of blue carbon stock is 

essential, as this study shall contribute to achieving targets 14.2 and 14.5 of SDG 14th by the United Nations.    

 

1. INTRODUCTION 

1.1 Background of the Study  

Satellite-based mapping and estimation of seagrass total above-

ground carbon (STAGC) are crucially required. With seagrass 

habitats as coastal flowering vegetation, which holds essential 

ecological roles in coastal ecosystems.  The seagrasses are 

considered essential ecosystem due to the extensive meadows 

they form, which support high biodiversity.  These habitats also 

provide a critical coastal ecosystem for storing blue carbon 

stock, sediment accumulation, fisheries production and 

stabilisation (Traganos et al., 2018).  They generally contribute 

to the ocean ecosystems services by providing a vital nursery 

area for several species that support fisheries and adjacent 

habitats (Tan et al., 2016).   

 

The seagrass meadows ecosystem functions comprise genetic 

variability maintenance, coastal environment resilience by 

protecting from erosion, as well as carbon sequestration via 

removing carbon dioxide (CO2) from the atmosphere and 

storing it as an organic matter (Misbari and Hashim, 2016). 

Their higher productivity qualifies them a disproportionate 

impact on ocean great primary productivity, usually producing 

substantially more organic carbon (OC) than the seagrass 

habitat requires (Hossain et al., 2015).  Seagrass carbon storage 

is effective removal of CO2 from the atmosphere and ocean 

pools, which plays an essential role in climate change 

mitigations (Sani and Hashim, 2018). 

 

However, seagrasses are mainly declining due to anthropogenic 

disturbance, resulting in a prolonged growth rate that varies 

according to the species compositions.  The 20th century, and 

primarily since the 1940s, the seagrass habitats losses have been 

detected in various realms across the globe as a result of 

industrial impacts, boating, construction, dredging, overfishing, 

mining, and rising sea levels.   In Malaysia sixteen widely 

distributed seagrass species exists in both subtidal and intertidal 

environment, shoals and semi-enclosed lagoons along the 

coastline of Malaysia.  They are providing massive ecosystem 

services, while frequently experiencing a gradual decline as at 

the global level.  This continued deterioration of local seagrass 

is due to growth in population and economic advancements. 

 

Currently, studies on seagrass blue carbon stock mapping and 

estimations of STAGC using satellite-based remote sensing 

(RS) are limited (Hashim et al., 2014).  Therefore, an urgent 

need for regional and continental mapping and estimation of 

seagrass carbon stock is required.  Indeed, this habitat may 

perhaps function as an indicator for climate change mitigation, 

offering valuable information that will be useful for coastal 

health management.  It also provides conservations of related 

habitats within the investigated sites such as coral reefs and 

mangrove forest (Sani and Hashim, 2018). 

 

Hence, cost-effective techniques for seagrass blue carbon stock 

mapping and estimation is required, to replace conventional 

methods and overcome the confines available researchers and 

resources for such evaluation.  Satellite remotely sensed data 

had been employed successfully, to detects, map, and estimate 

seagrass above-ground biomass (Misbari and Hashim, 2016).  

Percentage cover (Kovacs et al., 2018) and change detection in 

seagrass above-ground biomass estimation (Misbari and 

Hashim, 2014).  Single species of seagrasses have similarly 

been spectrally detected and mapped by employing 
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hyperspectral RS data (Lyons et al., 2011).  RS seagrasses maps 

of large-scale areas with high accuracy has been realised within 

less cleared and cleared water via Depth Invariant Index (DII) 

and Bottom Reflected Index (BRI) (Misbari and Hashim, 2016; 

Poursanidis et al., 2018; Traganos, et al., 2018).   

 

Despite the efforts invested by researchers, however, there are 

no documented studies on the seagrass total above-ground 

carbon stock using the satellite-based approach in the entire 

Penang coastline and these results to a vacuum in complying 

with United Nation‟s convention on climate change.  Therefore, 

this study employed the satellite-based RS techniques to 

mapped and estimated seagrass total above-ground carbon 

stocks using BRI and DII in Penang coastline of Peninsula 

Malaysia (PM).  Similarly, the STAGC quantified from BRI 

and DII were compered for more accuracy. The estimate was 

successfully achieved using Landsat ETM+, which was realised 

by upscaling the study sample sites.  It is crucial to report the 

seagrass total above-ground carbon stock for supporting the 

realisation of sustainable developments goal‟s targets 14.2, and 

14.5 establish by the United Nations. 

 

 

2.  MATERIALS AND METHOD 

Seagrass total aboveground carbon data was obtained from the 

seagrass habitats occurring in the coastline Penang of PM.     

The study area covers about 131,590 km2 of the total land area, 

as presented in Figure 1.  Penang state is in the north-western 

coastline of PM, to the northern and eastern part bounded by 

Kedah state. The southern part is boarder by Perak state, 

similarly at the western side by the Straits of Malacca, as well as 

Sumatra of Indonesia.  Penang encompasses the Penang Island, 

which has an area coverage of approximately 285km2, and a 

coastal strip in the mainland known as Province Wellesley. 

Gazumbo Island is sandbank located in the eastern coastline 

(5˚21‟N, 100˚19‟E), near the Penang Bridge where the in-situ 

seagrass samples were collected, up-scaled to map the seagrass 

total aboveground biomass of the entire Penang coastline. 

 
Figure 1. Seagrass boundaries along the study area. 

 

2.1    Materials 

 

Two principal material sets were employed in this study, 

precisely the satellite-based RS data and field measurements via 

in-situ observations utilised for ground-truthing. This ground-

truthing is divided into two independent mutual sets for 

induction and deduction of the seagrass modelling.  The 

Landsat 7 ETM+ data were used to estimate STAGC. The 

image was enclosed with minimum cloud cover inclined by 

monsoon seasons (see Table1).  The field samples gathering in 

2017 was performed in Gazumbo Island, which was extended to 

cover the whole seagrass meadows occurring within the 

coastline of Penang state. Furthermore, hydrographical charts 

obtained from the “Malaysian National Hydrographic Centre” 

was used for getting the depth. 

Table 1. Description of the information on Landsat 7 ETM+ 

images employed for this study 

No. Scene ID 
Date of 

Acquisition 

Loca-

tion 
Monsoon 

Cloud 

Coverage 

(%) 

1. LE71280

56201701

0EDC00 

2017-01-10 Penan

g 

NE* 6 

Note: *seagrass possibly not affected by monsoon 

2.2   Data Processing 

The two major stages (as shown in Figure 2) comprise three 

data processing phases were observed in this study. These 

phases involve a) pre-processing of data comprising geometric 

correction, radiometric correction, and atmospheric correction 

of satellite image; b) seagrass occurrence mapping; and c) 

estimation of STAGC from the derived seagrass boundary 

(distribution map).  Figure 2 demonstrates the flowchart of the 

entire three data processing phases. The tasks involved in data 

processing were achieved through processing software of digital 

image ArcMap version 10.4 and ENVI version 5.0. 

 
Figure 2. STAGC estimation flow chart employing BRI. 

 

To achieve the estimate of seagrass carbon in any of its 

biophysical components precisely STAGC using satellite 

images. Specific processes were observed, starting from in-situ 

seagrass measurements to satellite data acquisition.  Similarly, 

pre-processing and processing of the satellite imageries, 

biomass estimation, and biomass to carbon conversion using 

0.34 an existing conversion factor was also observed. Those 

mentioned above were well explained in a publication that 

estimates the seagrass biomass changes along Straits of Johor, 

in Merambong, PM  (Misbari and Hashim, 2016). Although this 

study only used two seagrass retrieval after the water column 

corrections using BRI and DII, which are needed for 

understanding the dynamics of seagrass carbon stocks 

estimation.  
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2.3    Seagrass in-situ Sampling Method 

 

Seagrasses occurrences around the study location were 

observed according to the tidal height, considered a challenges 

task in seagrass data gathering.  Thirty  (30) transects were 

established randomly in the sample locations (Gazumbo island 

Penang state), precisely within the shoal as well deep-water 

border. Similarly, quadrates were linearly placed and moved in 

every 5m along a 50 to 100m transects line, placed in the 

seagrass meadows. The entire location of the sample points was 

marked on the images of ETM+. GPS (Garmin) handheld was 

employed for recording each point, most significantly at the 

starting as well as the ending points of the overall transect lines.  

For estimating seagrass mixed species, 72 STAGB samples 

were harvested within the sample location via a 0.25m2 

quadrate, representing one-quarter of a full quadrate, which 

ranges from 100% to < than 10% quadrate coverage of seagrass. 

These samples were cleaned by applying the formalin solution 

together with clean water before proceeding to dry via oven for 

about a minimum of 48 hours and at 900C, till no more weight 

loss was documented.  STAGC samples were weighed using an 

electronic scale. Therefore, the samples recorded were 

correlated with the corresponding BRI for mapping and 

estimation of STAGC.  

 

2.4 Applying Water Column Correction Methods to 

Improve Accuracy in Seagrass Model  

 

It is necessary to measure light attenuation and correct the 

effects of the water column on benthic reflection utilised in 

applications, which encompass the SAV production and 

mapping of seagrass ecosystem (Klemas, 2013a, 2013b). The 

most common method used for water column correction is that 

of the Lyzenga‟s   (Lyzenga, 1981; Maritorena, 1996). Lyzenga 

(1978), this conveyed the correlation amongst radiance with 

bottom reflectance via the following equation: 

 

           (1) 

where  

Li describes the radiance within bandi.  Ld,i  stands for the 

radiance average, which was recorded in deep-water in bandi 

(meaning external reflection obtained from the surface of water 

and scattering from the atmosphere).  ai always constant, 

comprise of solar irradiance, atmospheric transmittance, water 

surface, and the radiance reduction. All mentioned occurred as a 

result of refraction in the water surface.  ri stands for bottom 

surface reflectance, whereas, Ki refers to the efficient water 

attenuation coefficient (m–1) of bandi.  g implies the geometric 

factor accounting for the path length via the water, Z stands for 

the water depth (m), and exp indicate the exponential. As 

further suggested by Lyzenga (1978) that a depth-invariant 

index (DII) calculation should be enabled to remove scattering 

of light.  Absorption effects in both water body and atmosphere 

can also be calculated, as expressed in equation (2): 

 

              (2) 

         ,              
where subscripts of i and j correspond to two distinct satellite 

bands and refer to the natural logarithm.  This DII is recognised 

to be effective in correcting less turbid water (clear water) such 

as type I and II waters (Bukata et al., 2018), however inefficient 

when there is less clarity of the water (Sagawa et al., 2010). 

Hence, to improve the accuracy of coastal mapping Sagawa et 

al. (2010) suggested for an alternative model as "bottom 

reflectance index (BRI)", which can be expressed through the 

following equation: 

 

 

 

 exp

Li Lsi
BRI

KigZ



     (3)

                                             

Through substituting the numerator of equation (3) via airiexp 

KigZ of equation (1), therefore, the BRI could be re-arranged as 

equation (4): 

                           (4) 

Where a and r refer to as in equation (1), with this 

development, BRI can proficiently be used in type II and III 

coastline. This achievement enables the comparison of more 

than only the proportions in reflectance distinction.   

 

2.5 Seagrass Total Blue Carbon Stock Derivation Using 

Satellite-based and In-Situ Data 

 

The STAGC was derived using BRI and DII models for 

retrieving submerged seagrass.  The utilisation of these two 

models is to prove their efficiency in carbon stock estimation.  

Therefore, the most effective model for seagrass assessment is 

BRI; with that reason, the model is expressed as followed: 

 

The model BRI was termed f1, which was produced from the 

values of BRI on the satellite imagery. This model was used for 

estimating the STAGC by establishing a relationship between 

the BRI values and STAGB in-situ measurement using the 

logistic model.  The new extracted values of the image were 

derived through applying the STAGB model with the STAGB 

in-situ, were employed for accuracy assessment (RMSE). The 

accuracy was achieved to ensure the precise measurement of the 

STAGC within the study site. 

 Seagrass STAGB = f1 (BRI) X C. (5) 

 

where: 

STAGB = seagrass total above-ground biomass, 

f1 (BRI) = function of STAGB in term of BRI, and  

C= a conversion factor of 0.34 (34 % of the biomass in 

seagrass is carbon) to convert biomass to carbon, 

Therefore, STAGC is the function of BRI. 

 

 

3. RESULTS AND DISCUSSION 

The main results presented by this study comprised a) mapping 

the spatial extent of seagrass meadows and b) quantification of 

the total aboveground seagrass carbon using BRI and DII in the 

coastline of Penang. The motivation that trigged the seagrass 

carbon estimation is to comply with the UNFCCC conversion, 

which mandates all member state to report the inventory of their 

carbon stocks.  

 

3.1 Mapping the Spatial Extent of Seagrass Aboveground 

Carbon 

 

Before the estimation of seagrass blue carbon stored in 

aboveground, the mapping of the spatial extent, it is necessary 
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to identify the boundaries of the seagrass occurrence within the 

study area. Carbon stocks estimation is generally measured as 

the percentage of carbon stores in blue carbon habitats. This 

proportion is typically described in metric tonnes of carbon per 

hectare (Mt /ha1) of an identified depth (Kroeger et al., 2017).  

Hence, the seagrasses in the study location were spatially 

mapped, and their proportion was estimated.  The said tasks 

were realised via selecting a suitable logistic model, which was 

employed for establishing a relationship between BRI and 

STAGB.  The correlations were successfully achieved, and 

carbon contents of the STAGC, as well as mapping, were 

realised.   

 

The spatial extent of the seagrass meadows was mapped, and 

their boundaries were identified based on the sample point of 

in-situ measurement.  Likewise, the seagrass presence through 

utilising maximum likelihood classification was detected (Table 

2).    In Gazumbo the sample area, 1,342.17ha of STAGC were 

discovered, whereas 0.4 MtC/ha1 was recorded as the contents 

of STAGC in aboveground seagrass pools.  The predicted and 

derived carbon contents were correlated to ensure accuracy and 

for validating the seagrass results. 

 

Table 2. Summary of seagrass locations using MLC. 

Classes Gazumbo Proportion of extent 

(%) 

Deepwater 181845 38 

Mud 126862 27 

Seagrass 163528 35 

Total extent =  472235  

 
For determining the seagrass occurrences, values of pixel were 

converted into BRI. The Landsat ETM+ 2017 corrected water 

column‟s bands were classified for spatially mapping the 

distribution of seagrass meadow.  MLC was employed for 

supervised classification due to the well-distribution and 

adequate sampling data for training and assigning individual 

pixel into the possible corresponding substrate classes 

according to probability density function. The classification 

method is proven as the best in categorically classifying 

underlying substrate features. Before this classification exercise, 

training areas, for mud/sand, seagrass as well as deep water 

were generated based-on in-situ observations. The overall 

classification accuracy with the interaction of inter-classes is 

demonstrated in Table 3. 

 

Table 3. Confusion matrix for classification of coastal features 

with BRI on Landsat ETM+ using MLC. The training samples 

set of an individual class derived from in-situ data were 

assigned for classifying the BRI layer. 

Classification 

Data 

Reference Data (Pixel) User 

Accuracy 

 Seagrass Mud/Sand Row 

Total 

 

Landsat 

ETM+ 

    

Seagrass 64 12 76 84.15 

Mud/Sand 36 67 85 78.8% 

Column total 100 79 161  

Producer 

accuracy 

64.0% 84.8%   

Overall 

accuracy 

  55.45

% 

 

Kappa 

coefficient 

  0.5547  

 

The most suitable Landsat band, which demonstrated robust 

compliance between in-situ data and result of seagrass 

delineation is the blue and red band (BRIb,r) combination. This 

evidence proved that the combination has higher accuracy 

(Table 3) when compared with BRIg,r or BRIb,g.  Before 

conducting such assessment, verification of in-situ data was 

implemented.  The blue band demonstrated the most suitable 

band within shallow for detection of substrate feature precisely 

seagrass with changing density classes. 

 

3.2 Logistic Models used for Deriving Above-ground 

Seagrass Total Carbon Stock  

 

Figure 3. Correlation between STAGB acquired from in-situ 

measurement with the seagrass proportion of seagrass coverage 

in Penang. 

 
Figure 4. The established relationship between seagrass indexes 

with STAGB quantified empirically from the Landsat ETM+ 

imageries of a) STAGB vs BRIb and b) STAGB against DII 

acquired after water column correction in 2017. 

  

To perfectly reporting the results of STAGC within the study 

location, the relationship between STAGB attained from in-situ 

observation with the percentage of seagrass coverage was 

performed (see Figure 3).  Similarly, ground-based in-situ 

measurement in STAGB and derived STAGB from BRI via 

prediction were compared. This process was also applied to DII 

for ensuring accuracy and comparing of the output (Figure 4). It 

connoted that BRIb values are higher compared to DII that it is 

less than 1% of the BRI values attained from Landsat ETM+.  

These variations in proportion could be as results of the impact 

in-depth, which is only present in BRI model, even though the 

DII model has no depth variable.  Additionally, it gives the 

impression that STAGC quantified from RS-based data over-

calculated the biomass matrices when compared with the 

manual STAGB measurement.  Figure 5 shows the coefficient 

determination of R2 obtained through establishing a relationship 

between STAGB ground-based measurements against STAGB 

estimated via Landsat ETM+. Therefore, R2 0.99 and 0.98, with 

respective RMSE +-0.90 g.m-2 and +-0.62 g.m-2 for only 30 m 

pixel resolution were realised.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-587-2019 | © Authors 2019. CC BY 4.0 License.

 
590



 

 

 
Figure 5. The in-situ-based seagrass biomass versus satellite-

based estimation in the corresponding point locations using 36 

inductive sites as well as 36 deductive sites. 

 

Individual single plotted marker denotes seagrass sampling 

quadrats selected by 0.5 x 0.5 m scale, which were up-scaled to 

the size of 30 x 30 m Landsat pixel.  Table 4 shows the logistic 

models employed to establish an association between STAGB 

against BRI and STAGB versus DII obtained both from ETM+. 

In this regards, the most suitable logistic model was used for the 

STAGB estimation.  

 

Table 4. Logistic models established on STAGB versus BRI 

and STAGB against DII acquired with Landsat ETM+. 

State Regression 

Model 

Equation R2 

Penang 

BRI 

Exponential ** STAGB= 

651.97e0.0194(BRI) 

0.986 

 Linear *** STAGB= 17.299BRI + 

627.45 

0.992 

 Logarithmic ** STAGB= 

208.26ln(BRI)+ 

379.87 

0.934 

 Polynomial 

(second-order) * 

STAGB= 

0.0229BRI2+ 

18.042BRI + 623.32 

 

0.992 

 Power * STAGB= 

489.31BRI0.2372 

0.956 

Penang  

DII 

Exponential *** STAGB= 

207.53e2.9386x (DII) 

0.942 

 Linear ** STAGB = 828.6DII + 

203.92 

0.955 

 Logarithmic ** STAGB= 

39.617ln(DII)+ 405.48 

0.799 

 Polynomial 

(second-order) * 

STAGB= 1173.2DII2+ 

590.81DII+ 208.23 

 

0.960 

 Power * STAGB= 

429.57DII0.1444 

0.833 

Note: significant levels: * p  0.05; ** p  0.01; ***p 0.001. 

In the selection of the best applicable logistic model to quantify 

STAGC, determination of coefficient via regression analysis 

was applied as per the prime indicator.  Thus, several logistic 

models were used on the Landsat images, where the linear 

model was found the most suitable in deriving STAGC contents 

in the study location.  The linear model employed in both 

images of BRI and DII can be expressed as follows: 

 

 STAGB = 17.299BRI + 627.45 (1) 

 

where a) = 17.299; and b) 627.45 = 0.986. 

 

 STAGB = 828.6DII + 203.92  (2) 

 

where a) = 828.6; and b) 203.92 = 0.955. 

 

As the model (R2), coefficient correlation demonstrated a high 

percentage of relationship with BRI (R20.986) on the satellite-

based image after processing, compared with the DII, which 

revealed R2 = 0.955.  The STAGC estimate from seagrass 

meadow is regarded as suitable with Landsat 7 ETM+ of 30 m 

resolution.  Therefore, the results of this study and some 

reported publications on seagrass biomass mapping and 

estimation (Hashim, et al., 2014; Misbari and Hashim, 2016; 

Sagawa, et al., 2010), it can be revealed that Landsat 7 with a 

high radiometric-resolution possess an excellent compliance 

using BRI than DII for estimating STAGC. 

 

3.3 Mapping and Estimation of Seagrass Blue Carbon 

Aboveground Carbon Component 

 

Blue carbon component is regarded as a pool where carbon is 

captured and, which are usually documented in MtC /ha1 in a 

specific carbon pool (Kroeger, et al., 2017).  The determination 

of carbon contents in the STAGC were realised after selecting 

the most suitable association between STAGB against BRIb and 

STAGB versus DIIb.  These developed models (linear 

regression) were applied through band-mask on the satellite 

image for obtaining the STAGB.  Similarly, to derive the 

STAGC contents, a conversion factor of 0.34 was utilised (Sani 

et al., 2019).   

 

The STAGC mapping of Penang Straits was achieved (Figure 

6), BRIb pixels were summed to 191,928, and where for a single 

pixel is 900 m2. This pixels proportion resulted in the 

realisation of the total area of 17,273.52ha covered by STAGC.  

The amounted carbon confirmed that the STAGC derived from 

BRI image is higher than the contents obtained using DII 

image, as shown in Table 5 (the estimation of STAGC with BRI 

recorded 80% while, DII 20% carbon contents ).  These 

differences in carbon contents from the two models (Figure 7) 

can be because of the depth values that exist only in BRI. These 

depth values enable the BRI to be applied for detecting 

submerged seagrass species in both clear (type A) and less clear 

water (type B).     

 

 
Figure 6. The total aboveground seagrass blue carbon spatial 

extent in Penang coastline. 
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Table 5. The proportion of STAGC of both western and eastern 

Johor. 

Model 

type 

Seagrass 

total area  

(ha) 

Carbon 

stock 

(MtC/ha1) 

STAGC  

(%) out of 

STAGB 

Accuracy 

assessment 

(RMSE) 

BRI 17,273.52 0.44 0.45 +-0.31 

DII 17,273.52 0.11 0.35 +-0.54 

 
Figure 5. The differences between the proportions of STAGC 

estimated using BRI and the other with DII model. 

 

As revealed earlier, the bands blue and red were employed in 

this study was due to the better capability of the blue band in 

penetrating water when compared with other bands.  Whereas, 

the green band functionality is similar to that of the blue band, 

not as excellent as a blue band.  This study is, therefore, 

essential to convey substantial impacts to four key sectors such 

as society, related industry, economy and environment. It will 

be vital to the inhabitant of coastal environment who solemnly 

relied on the coastal resources comprising mangrove forest, 

fisheries.  Similarly, the coastal management authority could 

adopt this study on issues related to the coastal environment as 

well as the marine life biodiversity. To know how to tackled 

ocean health and food security. 

 

Furthermore, it will assist in making a critical decision by 

related industry such as „National Department of Fisheries 

Board‟, principally on fish abundance within seagrass species 

along the coastline of Penang.  Economically, fisheries, tourism, 

and aquaculture activities will be benefited from this study, as 

they significantly relied on coastal health. Hence, reinstating the 

ocean resilience via protection of seagrass spatial extents and 

STAGC is the focal point of this study.  Generally, adapting 

these results as measures will assist in fast-tracking the 

realisation of targets 14.2, 14.5 of United Nations sustainable 

development Goal 14th, which is scheduled to be terminated in 

the year 2020. 

 

3.4. Accuracy Assessment 

 

Several accuracy assessments were conducted to ensure precise 

mapping and estimation of STAGC. The statistical assessments 

include RMSE applied to confirm the agreement between in-

situ STAGB and the predicted STAGB. Whereas the overall 

accuracy of intertidal and submerged seagrass detection on 30m 

resolution of Landsat ETM+ was conducted, both user‟s and 

producer‟s accuracy of seagrass were also applied (Table 3). 

STAGB correlated with in-situ seagrass coverage within the 

quadrat was reported. Also, for more conformation of the 

accuracy, t-test and khat statistic were observed (Table 6). 

 

 

 

 

Table 6. Accuracy assessment of seagrass 

 

4. CONCLUSIONS 

This study has effectively used satellite-based RS to 

demonstrate the mapping and estimation of STAGC by using a 

suitable logistic model and processing methods in a complex 

seagrass habitat. The robustness of DII and BRI on a Landsat 

ETM+ imagery is confirmed. BRI and DII images were used to 

allow the mapping of seagrass spatial distribution and 

estimation of STAGC contents of the study area.  The estimate 

realised by the seagrass retrieval models (BRI and DII) were 

compared for more precise STAGC measurement. Information 

on sea truth was employed for training datasets used in the 

MLC and validation of the features.  Consequently, this study is 

needed, as to provide initiatives for STAGC mapping and 

quantification within the coastline of Penang state. The results 

provided by this study will assist in coastal management as it 

gives awareness on STAGC dynamics, which can help speed up 

the realisation of SDGs‟ targets 14.2 and 14.5 of the United 

Nations. 
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